ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0m0r GIF version

Theorem nq0m0r 6646
Description: Multiplication with zero for non-negative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
Assertion
Ref Expression
nq0m0r (𝐴Q0 → (0Q0 ·Q0 𝐴) = 0Q0)

Proof of Theorem nq0m0r
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nq0nn 6632 . 2 (𝐴Q0 → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
2 df-0nq0 6616 . . . . . 6 0Q0 = [⟨∅, 1𝑜⟩] ~Q0
3 oveq12 5541 . . . . . 6 ((0Q0 = [⟨∅, 1𝑜⟩] ~Q0𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (0Q0 ·Q0 𝐴) = ([⟨∅, 1𝑜⟩] ~Q0 ·Q0 [⟨𝑤, 𝑣⟩] ~Q0 ))
42, 3mpan 414 . . . . 5 (𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 → (0Q0 ·Q0 𝐴) = ([⟨∅, 1𝑜⟩] ~Q0 ·Q0 [⟨𝑤, 𝑣⟩] ~Q0 ))
5 peano1 4335 . . . . . 6 ∅ ∈ ω
6 1pi 6505 . . . . . 6 1𝑜N
7 mulnnnq0 6640 . . . . . 6 (((∅ ∈ ω ∧ 1𝑜N) ∧ (𝑤 ∈ ω ∧ 𝑣N)) → ([⟨∅, 1𝑜⟩] ~Q0 ·Q0 [⟨𝑤, 𝑣⟩] ~Q0 ) = [⟨(∅ ·𝑜 𝑤), (1𝑜 ·𝑜 𝑣)⟩] ~Q0 )
85, 6, 7mpanl12 426 . . . . 5 ((𝑤 ∈ ω ∧ 𝑣N) → ([⟨∅, 1𝑜⟩] ~Q0 ·Q0 [⟨𝑤, 𝑣⟩] ~Q0 ) = [⟨(∅ ·𝑜 𝑤), (1𝑜 ·𝑜 𝑣)⟩] ~Q0 )
94, 8sylan9eqr 2135 . . . 4 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (0Q0 ·Q0 𝐴) = [⟨(∅ ·𝑜 𝑤), (1𝑜 ·𝑜 𝑣)⟩] ~Q0 )
10 nnm0r 6081 . . . . . . . . . . 11 (𝑤 ∈ ω → (∅ ·𝑜 𝑤) = ∅)
1110oveq1d 5547 . . . . . . . . . 10 (𝑤 ∈ ω → ((∅ ·𝑜 𝑤) ·𝑜 1𝑜) = (∅ ·𝑜 1𝑜))
12 1onn 6116 . . . . . . . . . . 11 1𝑜 ∈ ω
13 nnm0r 6081 . . . . . . . . . . 11 (1𝑜 ∈ ω → (∅ ·𝑜 1𝑜) = ∅)
1412, 13ax-mp 7 . . . . . . . . . 10 (∅ ·𝑜 1𝑜) = ∅
1511, 14syl6eq 2129 . . . . . . . . 9 (𝑤 ∈ ω → ((∅ ·𝑜 𝑤) ·𝑜 1𝑜) = ∅)
1615adantr 270 . . . . . . . 8 ((𝑤 ∈ ω ∧ 𝑣N) → ((∅ ·𝑜 𝑤) ·𝑜 1𝑜) = ∅)
17 mulpiord 6507 . . . . . . . . . . . 12 ((1𝑜N𝑣N) → (1𝑜 ·N 𝑣) = (1𝑜 ·𝑜 𝑣))
18 mulclpi 6518 . . . . . . . . . . . 12 ((1𝑜N𝑣N) → (1𝑜 ·N 𝑣) ∈ N)
1917, 18eqeltrrd 2156 . . . . . . . . . . 11 ((1𝑜N𝑣N) → (1𝑜 ·𝑜 𝑣) ∈ N)
206, 19mpan 414 . . . . . . . . . 10 (𝑣N → (1𝑜 ·𝑜 𝑣) ∈ N)
21 pinn 6499 . . . . . . . . . 10 ((1𝑜 ·𝑜 𝑣) ∈ N → (1𝑜 ·𝑜 𝑣) ∈ ω)
22 nnm0 6077 . . . . . . . . . 10 ((1𝑜 ·𝑜 𝑣) ∈ ω → ((1𝑜 ·𝑜 𝑣) ·𝑜 ∅) = ∅)
2320, 21, 223syl 17 . . . . . . . . 9 (𝑣N → ((1𝑜 ·𝑜 𝑣) ·𝑜 ∅) = ∅)
2423adantl 271 . . . . . . . 8 ((𝑤 ∈ ω ∧ 𝑣N) → ((1𝑜 ·𝑜 𝑣) ·𝑜 ∅) = ∅)
2516, 24eqtr4d 2116 . . . . . . 7 ((𝑤 ∈ ω ∧ 𝑣N) → ((∅ ·𝑜 𝑤) ·𝑜 1𝑜) = ((1𝑜 ·𝑜 𝑣) ·𝑜 ∅))
2610, 5syl6eqel 2169 . . . . . . . 8 (𝑤 ∈ ω → (∅ ·𝑜 𝑤) ∈ ω)
27 enq0eceq 6627 . . . . . . . . 9 ((((∅ ·𝑜 𝑤) ∈ ω ∧ (1𝑜 ·𝑜 𝑣) ∈ N) ∧ (∅ ∈ ω ∧ 1𝑜N)) → ([⟨(∅ ·𝑜 𝑤), (1𝑜 ·𝑜 𝑣)⟩] ~Q0 = [⟨∅, 1𝑜⟩] ~Q0 ↔ ((∅ ·𝑜 𝑤) ·𝑜 1𝑜) = ((1𝑜 ·𝑜 𝑣) ·𝑜 ∅)))
285, 6, 27mpanr12 429 . . . . . . . 8 (((∅ ·𝑜 𝑤) ∈ ω ∧ (1𝑜 ·𝑜 𝑣) ∈ N) → ([⟨(∅ ·𝑜 𝑤), (1𝑜 ·𝑜 𝑣)⟩] ~Q0 = [⟨∅, 1𝑜⟩] ~Q0 ↔ ((∅ ·𝑜 𝑤) ·𝑜 1𝑜) = ((1𝑜 ·𝑜 𝑣) ·𝑜 ∅)))
2926, 20, 28syl2an 283 . . . . . . 7 ((𝑤 ∈ ω ∧ 𝑣N) → ([⟨(∅ ·𝑜 𝑤), (1𝑜 ·𝑜 𝑣)⟩] ~Q0 = [⟨∅, 1𝑜⟩] ~Q0 ↔ ((∅ ·𝑜 𝑤) ·𝑜 1𝑜) = ((1𝑜 ·𝑜 𝑣) ·𝑜 ∅)))
3025, 29mpbird 165 . . . . . 6 ((𝑤 ∈ ω ∧ 𝑣N) → [⟨(∅ ·𝑜 𝑤), (1𝑜 ·𝑜 𝑣)⟩] ~Q0 = [⟨∅, 1𝑜⟩] ~Q0 )
3130, 2syl6eqr 2131 . . . . 5 ((𝑤 ∈ ω ∧ 𝑣N) → [⟨(∅ ·𝑜 𝑤), (1𝑜 ·𝑜 𝑣)⟩] ~Q0 = 0Q0)
3231adantr 270 . . . 4 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → [⟨(∅ ·𝑜 𝑤), (1𝑜 ·𝑜 𝑣)⟩] ~Q0 = 0Q0)
339, 32eqtrd 2113 . . 3 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (0Q0 ·Q0 𝐴) = 0Q0)
3433exlimivv 1817 . 2 (∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (0Q0 ·Q0 𝐴) = 0Q0)
351, 34syl 14 1 (𝐴Q0 → (0Q0 ·Q0 𝐴) = 0Q0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wex 1421  wcel 1433  c0 3251  cop 3401  ωcom 4331  (class class class)co 5532  1𝑜c1o 6017   ·𝑜 comu 6022  [cec 6127  Ncnpi 6462   ·N cmi 6464   ~Q0 ceq0 6476  Q0cnq0 6477  0Q0c0q0 6478   ·Q0 cmq0 6480
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-mi 6496  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-mq0 6618
This theorem is referenced by:  prarloclem5  6690
  Copyright terms: Public domain W3C validator