ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabex3 GIF version

Theorem opabex3 5769
Description: Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
opabex3.1 𝐴 ∈ V
opabex3.2 (𝑥𝐴 → {𝑦𝜑} ∈ V)
Assertion
Ref Expression
opabex3 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabex3
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.42v 1827 . . . . . 6 (∃𝑦(𝑥𝐴 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
2 an12 525 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜑)) ↔ (𝑥𝐴 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
32exbii 1536 . . . . . 6 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜑)) ↔ ∃𝑦(𝑥𝐴 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
4 elxp 4380 . . . . . . . 8 (𝑧 ∈ ({𝑥} × {𝑦𝜑}) ↔ ∃𝑣𝑤(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜑})))
5 excom 1594 . . . . . . . . 9 (∃𝑣𝑤(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜑})) ↔ ∃𝑤𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜑})))
6 an12 525 . . . . . . . . . . . . 13 ((𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜑})) ↔ (𝑣 ∈ {𝑥} ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑})))
7 velsn 3415 . . . . . . . . . . . . . 14 (𝑣 ∈ {𝑥} ↔ 𝑣 = 𝑥)
87anbi1i 445 . . . . . . . . . . . . 13 ((𝑣 ∈ {𝑥} ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑})) ↔ (𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑})))
96, 8bitri 182 . . . . . . . . . . . 12 ((𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜑})) ↔ (𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑})))
109exbii 1536 . . . . . . . . . . 11 (∃𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜑})) ↔ ∃𝑣(𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑})))
11 vex 2604 . . . . . . . . . . . 12 𝑥 ∈ V
12 opeq1 3570 . . . . . . . . . . . . . 14 (𝑣 = 𝑥 → ⟨𝑣, 𝑤⟩ = ⟨𝑥, 𝑤⟩)
1312eqeq2d 2092 . . . . . . . . . . . . 13 (𝑣 = 𝑥 → (𝑧 = ⟨𝑣, 𝑤⟩ ↔ 𝑧 = ⟨𝑥, 𝑤⟩))
1413anbi1d 452 . . . . . . . . . . . 12 (𝑣 = 𝑥 → ((𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑}) ↔ (𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑})))
1511, 14ceqsexv 2638 . . . . . . . . . . 11 (∃𝑣(𝑣 = 𝑥 ∧ (𝑧 = ⟨𝑣, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑})) ↔ (𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑}))
1610, 15bitri 182 . . . . . . . . . 10 (∃𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜑})) ↔ (𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑}))
1716exbii 1536 . . . . . . . . 9 (∃𝑤𝑣(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜑})) ↔ ∃𝑤(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑}))
185, 17bitri 182 . . . . . . . 8 (∃𝑣𝑤(𝑧 = ⟨𝑣, 𝑤⟩ ∧ (𝑣 ∈ {𝑥} ∧ 𝑤 ∈ {𝑦𝜑})) ↔ ∃𝑤(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑}))
19 nfv 1461 . . . . . . . . . 10 𝑦 𝑧 = ⟨𝑥, 𝑤
20 nfsab1 2071 . . . . . . . . . 10 𝑦 𝑤 ∈ {𝑦𝜑}
2119, 20nfan 1497 . . . . . . . . 9 𝑦(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑})
22 nfv 1461 . . . . . . . . 9 𝑤(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
23 opeq2 3571 . . . . . . . . . . 11 (𝑤 = 𝑦 → ⟨𝑥, 𝑤⟩ = ⟨𝑥, 𝑦⟩)
2423eqeq2d 2092 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑧 = ⟨𝑥, 𝑤⟩ ↔ 𝑧 = ⟨𝑥, 𝑦⟩))
25 sbequ12 1694 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑦]𝜑))
2625equcoms 1634 . . . . . . . . . . 11 (𝑤 = 𝑦 → (𝜑 ↔ [𝑤 / 𝑦]𝜑))
27 df-clab 2068 . . . . . . . . . . 11 (𝑤 ∈ {𝑦𝜑} ↔ [𝑤 / 𝑦]𝜑)
2826, 27syl6rbbr 197 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑤 ∈ {𝑦𝜑} ↔ 𝜑))
2924, 28anbi12d 456 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑}) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
3021, 22, 29cbvex 1679 . . . . . . . 8 (∃𝑤(𝑧 = ⟨𝑥, 𝑤⟩ ∧ 𝑤 ∈ {𝑦𝜑}) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
314, 18, 303bitri 204 . . . . . . 7 (𝑧 ∈ ({𝑥} × {𝑦𝜑}) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
3231anbi2i 444 . . . . . 6 ((𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜑})) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
331, 3, 323bitr4ri 211 . . . . 5 ((𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜑})) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜑)))
3433exbii 1536 . . . 4 (∃𝑥(𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜑})) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜑)))
35 eliun 3682 . . . . 5 (𝑧 𝑥𝐴 ({𝑥} × {𝑦𝜑}) ↔ ∃𝑥𝐴 𝑧 ∈ ({𝑥} × {𝑦𝜑}))
36 df-rex 2354 . . . . 5 (∃𝑥𝐴 𝑧 ∈ ({𝑥} × {𝑦𝜑}) ↔ ∃𝑥(𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜑})))
3735, 36bitri 182 . . . 4 (𝑧 𝑥𝐴 ({𝑥} × {𝑦𝜑}) ↔ ∃𝑥(𝑥𝐴𝑧 ∈ ({𝑥} × {𝑦𝜑})))
38 elopab 4013 . . . 4 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝜑)))
3934, 37, 383bitr4i 210 . . 3 (𝑧 𝑥𝐴 ({𝑥} × {𝑦𝜑}) ↔ 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)})
4039eqriv 2078 . 2 𝑥𝐴 ({𝑥} × {𝑦𝜑}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
41 opabex3.1 . . 3 𝐴 ∈ V
42 snexg 3956 . . . . . 6 (𝑥 ∈ V → {𝑥} ∈ V)
4311, 42ax-mp 7 . . . . 5 {𝑥} ∈ V
44 opabex3.2 . . . . 5 (𝑥𝐴 → {𝑦𝜑} ∈ V)
45 xpexg 4470 . . . . 5 (({𝑥} ∈ V ∧ {𝑦𝜑} ∈ V) → ({𝑥} × {𝑦𝜑}) ∈ V)
4643, 44, 45sylancr 405 . . . 4 (𝑥𝐴 → ({𝑥} × {𝑦𝜑}) ∈ V)
4746rgen 2416 . . 3 𝑥𝐴 ({𝑥} × {𝑦𝜑}) ∈ V
48 iunexg 5766 . . 3 ((𝐴 ∈ V ∧ ∀𝑥𝐴 ({𝑥} × {𝑦𝜑}) ∈ V) → 𝑥𝐴 ({𝑥} × {𝑦𝜑}) ∈ V)
4941, 47, 48mp2an 416 . 2 𝑥𝐴 ({𝑥} × {𝑦𝜑}) ∈ V
5040, 49eqeltrri 2152 1 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wex 1421  wcel 1433  [wsb 1685  {cab 2067  wral 2348  wrex 2349  Vcvv 2601  {csn 3398  cop 3401   ciun 3678  {copab 3838   × cxp 4361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator