| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1sdom | Structured version Visualization version Unicode version | ||
| Description: A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom 8029.) (Contributed by Mario Carneiro, 12-Jan-2013.) |
| Ref | Expression |
|---|---|
| 1sdom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4657 |
. 2
| |
| 2 | rexeq 3139 |
. . 3
| |
| 3 | 2 | rexeqbi1dv 3147 |
. 2
|
| 4 | 1onn 7719 |
. . . 4
| |
| 5 | sucdom 8157 |
. . . 4
| |
| 6 | 4, 5 | ax-mp 5 |
. . 3
|
| 7 | df-2o 7561 |
. . . 4
| |
| 8 | 7 | breq1i 4660 |
. . 3
|
| 9 | 2dom 8029 |
. . . 4
| |
| 10 | df2o3 7573 |
. . . . 5
| |
| 11 | vex 3203 |
. . . . . . . . . . . 12
| |
| 12 | vex 3203 |
. . . . . . . . . . . 12
| |
| 13 | 0ex 4790 |
. . . . . . . . . . . 12
| |
| 14 | 4 | elexi 3213 |
. . . . . . . . . . . 12
|
| 15 | 11, 12, 13, 14 | funpr 5944 |
. . . . . . . . . . 11
|
| 16 | df-ne 2795 |
. . . . . . . . . . 11
| |
| 17 | 1n0 7575 |
. . . . . . . . . . . . . . 15
| |
| 18 | 17 | necomi 2848 |
. . . . . . . . . . . . . 14
|
| 19 | 13, 14, 11, 12 | fpr 6421 |
. . . . . . . . . . . . . 14
|
| 20 | 18, 19 | ax-mp 5 |
. . . . . . . . . . . . 13
|
| 21 | df-f1 5893 |
. . . . . . . . . . . . 13
| |
| 22 | 20, 21 | mpbiran 953 |
. . . . . . . . . . . 12
|
| 23 | 13, 11 | cnvsn 5618 |
. . . . . . . . . . . . . . 15
|
| 24 | 14, 12 | cnvsn 5618 |
. . . . . . . . . . . . . . 15
|
| 25 | 23, 24 | uneq12i 3765 |
. . . . . . . . . . . . . 14
|
| 26 | df-pr 4180 |
. . . . . . . . . . . . . . . 16
| |
| 27 | 26 | cnveqi 5297 |
. . . . . . . . . . . . . . 15
|
| 28 | cnvun 5538 |
. . . . . . . . . . . . . . 15
| |
| 29 | 27, 28 | eqtri 2644 |
. . . . . . . . . . . . . 14
|
| 30 | df-pr 4180 |
. . . . . . . . . . . . . 14
| |
| 31 | 25, 29, 30 | 3eqtr4i 2654 |
. . . . . . . . . . . . 13
|
| 32 | 31 | funeqi 5909 |
. . . . . . . . . . . 12
|
| 33 | 22, 32 | bitr2i 265 |
. . . . . . . . . . 11
|
| 34 | 15, 16, 33 | 3imtr3i 280 |
. . . . . . . . . 10
|
| 35 | prssi 4353 |
. . . . . . . . . 10
| |
| 36 | f1ss 6106 |
. . . . . . . . . 10
| |
| 37 | 34, 35, 36 | syl2an 494 |
. . . . . . . . 9
|
| 38 | prex 4909 |
. . . . . . . . . 10
| |
| 39 | f1eq1 6096 |
. . . . . . . . . 10
| |
| 40 | 38, 39 | spcev 3300 |
. . . . . . . . 9
|
| 41 | 37, 40 | syl 17 |
. . . . . . . 8
|
| 42 | vex 3203 |
. . . . . . . . 9
| |
| 43 | 42 | brdom 7967 |
. . . . . . . 8
|
| 44 | 41, 43 | sylibr 224 |
. . . . . . 7
|
| 45 | 44 | expcom 451 |
. . . . . 6
|
| 46 | 45 | rexlimivv 3036 |
. . . . 5
|
| 47 | 10, 46 | syl5eqbr 4688 |
. . . 4
|
| 48 | 9, 47 | impbii 199 |
. . 3
|
| 49 | 6, 8, 48 | 3bitr2i 288 |
. 2
|
| 50 | 1, 3, 49 | vtoclbg 3267 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-1o 7560 df-2o 7561 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 |
| This theorem is referenced by: unxpdomlem3 8166 frgpnabl 18278 isnzr2 19263 |
| Copyright terms: Public domain | W3C validator |