| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 3atlem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for 3at 34776. (Contributed by NM, 22-Jun-2012.) |
| Ref | Expression |
|---|---|
| 3at.l |
|
| 3at.j |
|
| 3at.a |
|
| Ref | Expression |
|---|---|
| 3atlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp11 1091 |
. . . . 5
| |
| 2 | simp131 1196 |
. . . . 5
| |
| 3 | simp132 1197 |
. . . . 5
| |
| 4 | simp133 1198 |
. . . . 5
| |
| 5 | 3at.j |
. . . . . 6
| |
| 6 | 3at.a |
. . . . . 6
| |
| 7 | 5, 6 | hlatjass 34656 |
. . . . 5
|
| 8 | 1, 2, 3, 4, 7 | syl13anc 1328 |
. . . 4
|
| 9 | simp121 1193 |
. . . . . . . . . 10
| |
| 10 | simp122 1194 |
. . . . . . . . . 10
| |
| 11 | simp123 1195 |
. . . . . . . . . 10
| |
| 12 | 5, 6 | hlatjass 34656 |
. . . . . . . . . 10
|
| 13 | 1, 9, 10, 11, 12 | syl13anc 1328 |
. . . . . . . . 9
|
| 14 | simp3 1063 |
. . . . . . . . 9
| |
| 15 | 13, 14 | eqbrtrrd 4677 |
. . . . . . . 8
|
| 16 | hllat 34650 |
. . . . . . . . . 10
| |
| 17 | 1, 16 | syl 17 |
. . . . . . . . 9
|
| 18 | eqid 2622 |
. . . . . . . . . . 11
| |
| 19 | 18, 6 | atbase 34576 |
. . . . . . . . . 10
|
| 20 | 9, 19 | syl 17 |
. . . . . . . . 9
|
| 21 | 18, 5, 6 | hlatjcl 34653 |
. . . . . . . . . 10
|
| 22 | 1, 10, 11, 21 | syl3anc 1326 |
. . . . . . . . 9
|
| 23 | 18, 5, 6 | hlatjcl 34653 |
. . . . . . . . . . 11
|
| 24 | 1, 2, 3, 23 | syl3anc 1326 |
. . . . . . . . . 10
|
| 25 | 18, 6 | atbase 34576 |
. . . . . . . . . . 11
|
| 26 | 4, 25 | syl 17 |
. . . . . . . . . 10
|
| 27 | 18, 5 | latjcl 17051 |
. . . . . . . . . 10
|
| 28 | 17, 24, 26, 27 | syl3anc 1326 |
. . . . . . . . 9
|
| 29 | 3at.l |
. . . . . . . . . 10
| |
| 30 | 18, 29, 5 | latjle12 17062 |
. . . . . . . . 9
|
| 31 | 17, 20, 22, 28, 30 | syl13anc 1328 |
. . . . . . . 8
|
| 32 | 15, 31 | mpbird 247 |
. . . . . . 7
|
| 33 | 32 | simpld 475 |
. . . . . 6
|
| 34 | 33, 8 | breqtrd 4679 |
. . . . 5
|
| 35 | 18, 5, 6 | hlatjcl 34653 |
. . . . . . 7
|
| 36 | 1, 3, 4, 35 | syl3anc 1326 |
. . . . . 6
|
| 37 | simp22 1095 |
. . . . . 6
| |
| 38 | 18, 29, 5, 6 | hlexchb2 34671 |
. . . . . 6
|
| 39 | 1, 9, 2, 36, 37, 38 | syl131anc 1339 |
. . . . 5
|
| 40 | 34, 39 | mpbid 222 |
. . . 4
|
| 41 | 5, 6 | hlatj12 34657 |
. . . . 5
|
| 42 | 1, 9, 3, 4, 41 | syl13anc 1328 |
. . . 4
|
| 43 | 8, 40, 42 | 3eqtr2d 2662 |
. . 3
|
| 44 | 5, 6 | hlatj12 34657 |
. . . . . . . 8
|
| 45 | 1, 9, 10, 11, 44 | syl13anc 1328 |
. . . . . . 7
|
| 46 | 15, 45, 43 | 3brtr3d 4684 |
. . . . . 6
|
| 47 | 18, 6 | atbase 34576 |
. . . . . . . 8
|
| 48 | 10, 47 | syl 17 |
. . . . . . 7
|
| 49 | 18, 5, 6 | hlatjcl 34653 |
. . . . . . . 8
|
| 50 | 1, 9, 11, 49 | syl3anc 1326 |
. . . . . . 7
|
| 51 | 18, 6 | atbase 34576 |
. . . . . . . . 9
|
| 52 | 3, 51 | syl 17 |
. . . . . . . 8
|
| 53 | 18, 5, 6 | hlatjcl 34653 |
. . . . . . . . 9
|
| 54 | 1, 9, 4, 53 | syl3anc 1326 |
. . . . . . . 8
|
| 55 | 18, 5 | latjcl 17051 |
. . . . . . . 8
|
| 56 | 17, 52, 54, 55 | syl3anc 1326 |
. . . . . . 7
|
| 57 | 18, 29, 5 | latjle12 17062 |
. . . . . . 7
|
| 58 | 17, 48, 50, 56, 57 | syl13anc 1328 |
. . . . . 6
|
| 59 | 46, 58 | mpbird 247 |
. . . . 5
|
| 60 | 59 | simpld 475 |
. . . 4
|
| 61 | simp23 1096 |
. . . . 5
| |
| 62 | 18, 29, 5, 6 | hlexchb2 34671 |
. . . . 5
|
| 63 | 1, 10, 3, 54, 61, 62 | syl131anc 1339 |
. . . 4
|
| 64 | 60, 63 | mpbid 222 |
. . 3
|
| 65 | 18, 5 | latj13 17098 |
. . . 4
|
| 66 | 17, 48, 20, 26, 65 | syl13anc 1328 |
. . 3
|
| 67 | 43, 64, 66 | 3eqtr2d 2662 |
. 2
|
| 68 | 18, 5, 6 | hlatjcl 34653 |
. . . . . . . 8
|
| 69 | 1, 9, 10, 68 | syl3anc 1326 |
. . . . . . 7
|
| 70 | 18, 6 | atbase 34576 |
. . . . . . . 8
|
| 71 | 11, 70 | syl 17 |
. . . . . . 7
|
| 72 | 18, 29, 5 | latjle12 17062 |
. . . . . . 7
|
| 73 | 17, 69, 71, 28, 72 | syl13anc 1328 |
. . . . . 6
|
| 74 | 14, 73 | mpbird 247 |
. . . . 5
|
| 75 | 74 | simprd 479 |
. . . 4
|
| 76 | 75, 67 | breqtrd 4679 |
. . 3
|
| 77 | simp21 1094 |
. . . 4
| |
| 78 | 18, 29, 5, 6 | hlexchb2 34671 |
. . . 4
|
| 79 | 1, 11, 4, 69, 77, 78 | syl131anc 1339 |
. . 3
|
| 80 | 76, 79 | mpbid 222 |
. 2
|
| 81 | 18, 5 | latjcom 17059 |
. . 3
|
| 82 | 17, 71, 69, 81 | syl3anc 1326 |
. 2
|
| 83 | 67, 80, 82 | 3eqtr2rd 2663 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-lat 17046 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 |
| This theorem is referenced by: 3atlem3 34771 |
| Copyright terms: Public domain | W3C validator |