Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemunv Structured version   Visualization version   Unicode version

Theorem 4atexlemunv 35352
Description: Lemma for 4atexlem7 35361. (Contributed by NM, 21-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) ) )
4thatlem0.l  |-  .<_  =  ( le `  K )
4thatlem0.j  |-  .\/  =  ( join `  K )
4thatlem0.m  |-  ./\  =  ( meet `  K )
4thatlem0.a  |-  A  =  ( Atoms `  K )
4thatlem0.h  |-  H  =  ( LHyp `  K
)
4thatlem0.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
4thatlem0.v  |-  V  =  ( ( P  .\/  S )  ./\  W )
Assertion
Ref Expression
4atexlemunv  |-  ( ph  ->  U  =/=  V )

Proof of Theorem 4atexlemunv
StepHypRef Expression
1 4thatlem.ph . . 3  |-  ( ph  <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) ) )
214atexlemnslpq 35342 . 2  |-  ( ph  ->  -.  S  .<_  ( P 
.\/  Q ) )
314atexlemk 35333 . . . . . . 7  |-  ( ph  ->  K  e.  HL )
414atexlemp 35336 . . . . . . 7  |-  ( ph  ->  P  e.  A )
514atexlems 35338 . . . . . . 7  |-  ( ph  ->  S  e.  A )
6 4thatlem0.l . . . . . . . 8  |-  .<_  =  ( le `  K )
7 4thatlem0.j . . . . . . . 8  |-  .\/  =  ( join `  K )
8 4thatlem0.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
96, 7, 8hlatlej2 34662 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  S  .<_  ( P  .\/  S ) )
103, 4, 5, 9syl3anc 1326 . . . . . 6  |-  ( ph  ->  S  .<_  ( P  .\/  S ) )
1110adantr 481 . . . . 5  |-  ( (
ph  /\  U  =  V )  ->  S  .<_  ( P  .\/  S
) )
12 4thatlem0.v . . . . . . . . 9  |-  V  =  ( ( P  .\/  S )  ./\  W )
1314atexlemkl 35343 . . . . . . . . . 10  |-  ( ph  ->  K  e.  Lat )
141, 7, 84atexlempsb 35346 . . . . . . . . . 10  |-  ( ph  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
15 4thatlem0.h . . . . . . . . . . 11  |-  H  =  ( LHyp `  K
)
161, 154atexlemwb 35345 . . . . . . . . . 10  |-  ( ph  ->  W  e.  ( Base `  K ) )
17 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  K )  =  (
Base `  K )
18 4thatlem0.m . . . . . . . . . . 11  |-  ./\  =  ( meet `  K )
1917, 6, 18latmle1 17076 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  S )  ./\  W )  .<_  ( P  .\/  S ) )
2013, 14, 16, 19syl3anc 1326 . . . . . . . . 9  |-  ( ph  ->  ( ( P  .\/  S )  ./\  W )  .<_  ( P  .\/  S
) )
2112, 20syl5eqbr 4688 . . . . . . . 8  |-  ( ph  ->  V  .<_  ( P  .\/  S ) )
2214atexlemkc 35344 . . . . . . . . 9  |-  ( ph  ->  K  e.  CvLat )
23 4thatlem0.u . . . . . . . . . 10  |-  U  =  ( ( P  .\/  Q )  ./\  W )
241, 6, 7, 18, 8, 15, 23, 124atexlemv 35351 . . . . . . . . 9  |-  ( ph  ->  V  e.  A )
2517, 6, 18latmle2 17077 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( P  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  S )  ./\  W )  .<_  W )
2613, 14, 16, 25syl3anc 1326 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  .\/  S )  ./\  W )  .<_  W )
2712, 26syl5eqbr 4688 . . . . . . . . . 10  |-  ( ph  ->  V  .<_  W )
2814atexlempw 35335 . . . . . . . . . . 11  |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
2928simprd 479 . . . . . . . . . 10  |-  ( ph  ->  -.  P  .<_  W )
30 nbrne2 4673 . . . . . . . . . 10  |-  ( ( V  .<_  W  /\  -.  P  .<_  W )  ->  V  =/=  P
)
3127, 29, 30syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  V  =/=  P )
326, 7, 8cvlatexchb1 34621 . . . . . . . . 9  |-  ( ( K  e.  CvLat  /\  ( V  e.  A  /\  S  e.  A  /\  P  e.  A )  /\  V  =/=  P
)  ->  ( V  .<_  ( P  .\/  S
)  <->  ( P  .\/  V )  =  ( P 
.\/  S ) ) )
3322, 24, 5, 4, 31, 32syl131anc 1339 . . . . . . . 8  |-  ( ph  ->  ( V  .<_  ( P 
.\/  S )  <->  ( P  .\/  V )  =  ( P  .\/  S ) ) )
3421, 33mpbid 222 . . . . . . 7  |-  ( ph  ->  ( P  .\/  V
)  =  ( P 
.\/  S ) )
3534adantr 481 . . . . . 6  |-  ( (
ph  /\  U  =  V )  ->  ( P  .\/  V )  =  ( P  .\/  S
) )
36 oveq2 6658 . . . . . . . 8  |-  ( U  =  V  ->  ( P  .\/  U )  =  ( P  .\/  V
) )
3736eqcomd 2628 . . . . . . 7  |-  ( U  =  V  ->  ( P  .\/  V )  =  ( P  .\/  U
) )
3814atexlemq 35337 . . . . . . . . . . 11  |-  ( ph  ->  Q  e.  A )
3917, 7, 8hlatjcl 34653 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
403, 4, 38, 39syl3anc 1326 . . . . . . . . . 10  |-  ( ph  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
4117, 6, 18latmle1 17076 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  ( P  .\/  Q ) )
4213, 40, 16, 41syl3anc 1326 . . . . . . . . 9  |-  ( ph  ->  ( ( P  .\/  Q )  ./\  W )  .<_  ( P  .\/  Q
) )
4323, 42syl5eqbr 4688 . . . . . . . 8  |-  ( ph  ->  U  .<_  ( P  .\/  Q ) )
441, 6, 7, 18, 8, 15, 234atexlemu 35350 . . . . . . . . 9  |-  ( ph  ->  U  e.  A )
4517, 6, 18latmle2 17077 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
4613, 40, 16, 45syl3anc 1326 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
4723, 46syl5eqbr 4688 . . . . . . . . . 10  |-  ( ph  ->  U  .<_  W )
48 nbrne2 4673 . . . . . . . . . 10  |-  ( ( U  .<_  W  /\  -.  P  .<_  W )  ->  U  =/=  P
)
4947, 29, 48syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  U  =/=  P )
506, 7, 8cvlatexchb1 34621 . . . . . . . . 9  |-  ( ( K  e.  CvLat  /\  ( U  e.  A  /\  Q  e.  A  /\  P  e.  A )  /\  U  =/=  P
)  ->  ( U  .<_  ( P  .\/  Q
)  <->  ( P  .\/  U )  =  ( P 
.\/  Q ) ) )
5122, 44, 38, 4, 49, 50syl131anc 1339 . . . . . . . 8  |-  ( ph  ->  ( U  .<_  ( P 
.\/  Q )  <->  ( P  .\/  U )  =  ( P  .\/  Q ) ) )
5243, 51mpbid 222 . . . . . . 7  |-  ( ph  ->  ( P  .\/  U
)  =  ( P 
.\/  Q ) )
5337, 52sylan9eqr 2678 . . . . . 6  |-  ( (
ph  /\  U  =  V )  ->  ( P  .\/  V )  =  ( P  .\/  Q
) )
5435, 53eqtr3d 2658 . . . . 5  |-  ( (
ph  /\  U  =  V )  ->  ( P  .\/  S )  =  ( P  .\/  Q
) )
5511, 54breqtrd 4679 . . . 4  |-  ( (
ph  /\  U  =  V )  ->  S  .<_  ( P  .\/  Q
) )
5655ex 450 . . 3  |-  ( ph  ->  ( U  =  V  ->  S  .<_  ( P 
.\/  Q ) ) )
5756necon3bd 2808 . 2  |-  ( ph  ->  ( -.  S  .<_  ( P  .\/  Q )  ->  U  =/=  V
) )
582, 57mpd 15 1  |-  ( ph  ->  U  =/=  V )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   Atomscatm 34550   CvLatclc 34552   HLchlt 34637   LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-lhyp 35274
This theorem is referenced by:  4atexlemtlw  35353  4atexlemntlpq  35354  4atexlemc  35355  4atexlemnclw  35356
  Copyright terms: Public domain W3C validator