| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 4atexlemunv | Structured version Visualization version Unicode version | ||
| Description: Lemma for 4atexlem7 35361. (Contributed by NM, 21-Nov-2012.) |
| Ref | Expression |
|---|---|
| 4thatlem.ph |
|
| 4thatlem0.l |
|
| 4thatlem0.j |
|
| 4thatlem0.m |
|
| 4thatlem0.a |
|
| 4thatlem0.h |
|
| 4thatlem0.u |
|
| 4thatlem0.v |
|
| Ref | Expression |
|---|---|
| 4atexlemunv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4thatlem.ph |
. . 3
| |
| 2 | 1 | 4atexlemnslpq 35342 |
. 2
|
| 3 | 1 | 4atexlemk 35333 |
. . . . . . 7
|
| 4 | 1 | 4atexlemp 35336 |
. . . . . . 7
|
| 5 | 1 | 4atexlems 35338 |
. . . . . . 7
|
| 6 | 4thatlem0.l |
. . . . . . . 8
| |
| 7 | 4thatlem0.j |
. . . . . . . 8
| |
| 8 | 4thatlem0.a |
. . . . . . . 8
| |
| 9 | 6, 7, 8 | hlatlej2 34662 |
. . . . . . 7
|
| 10 | 3, 4, 5, 9 | syl3anc 1326 |
. . . . . 6
|
| 11 | 10 | adantr 481 |
. . . . 5
|
| 12 | 4thatlem0.v |
. . . . . . . . 9
| |
| 13 | 1 | 4atexlemkl 35343 |
. . . . . . . . . 10
|
| 14 | 1, 7, 8 | 4atexlempsb 35346 |
. . . . . . . . . 10
|
| 15 | 4thatlem0.h |
. . . . . . . . . . 11
| |
| 16 | 1, 15 | 4atexlemwb 35345 |
. . . . . . . . . 10
|
| 17 | eqid 2622 |
. . . . . . . . . . 11
| |
| 18 | 4thatlem0.m |
. . . . . . . . . . 11
| |
| 19 | 17, 6, 18 | latmle1 17076 |
. . . . . . . . . 10
|
| 20 | 13, 14, 16, 19 | syl3anc 1326 |
. . . . . . . . 9
|
| 21 | 12, 20 | syl5eqbr 4688 |
. . . . . . . 8
|
| 22 | 1 | 4atexlemkc 35344 |
. . . . . . . . 9
|
| 23 | 4thatlem0.u |
. . . . . . . . . 10
| |
| 24 | 1, 6, 7, 18, 8, 15, 23, 12 | 4atexlemv 35351 |
. . . . . . . . 9
|
| 25 | 17, 6, 18 | latmle2 17077 |
. . . . . . . . . . . 12
|
| 26 | 13, 14, 16, 25 | syl3anc 1326 |
. . . . . . . . . . 11
|
| 27 | 12, 26 | syl5eqbr 4688 |
. . . . . . . . . 10
|
| 28 | 1 | 4atexlempw 35335 |
. . . . . . . . . . 11
|
| 29 | 28 | simprd 479 |
. . . . . . . . . 10
|
| 30 | nbrne2 4673 |
. . . . . . . . . 10
| |
| 31 | 27, 29, 30 | syl2anc 693 |
. . . . . . . . 9
|
| 32 | 6, 7, 8 | cvlatexchb1 34621 |
. . . . . . . . 9
|
| 33 | 22, 24, 5, 4, 31, 32 | syl131anc 1339 |
. . . . . . . 8
|
| 34 | 21, 33 | mpbid 222 |
. . . . . . 7
|
| 35 | 34 | adantr 481 |
. . . . . 6
|
| 36 | oveq2 6658 |
. . . . . . . 8
| |
| 37 | 36 | eqcomd 2628 |
. . . . . . 7
|
| 38 | 1 | 4atexlemq 35337 |
. . . . . . . . . . 11
|
| 39 | 17, 7, 8 | hlatjcl 34653 |
. . . . . . . . . . 11
|
| 40 | 3, 4, 38, 39 | syl3anc 1326 |
. . . . . . . . . 10
|
| 41 | 17, 6, 18 | latmle1 17076 |
. . . . . . . . . 10
|
| 42 | 13, 40, 16, 41 | syl3anc 1326 |
. . . . . . . . 9
|
| 43 | 23, 42 | syl5eqbr 4688 |
. . . . . . . 8
|
| 44 | 1, 6, 7, 18, 8, 15, 23 | 4atexlemu 35350 |
. . . . . . . . 9
|
| 45 | 17, 6, 18 | latmle2 17077 |
. . . . . . . . . . . 12
|
| 46 | 13, 40, 16, 45 | syl3anc 1326 |
. . . . . . . . . . 11
|
| 47 | 23, 46 | syl5eqbr 4688 |
. . . . . . . . . 10
|
| 48 | nbrne2 4673 |
. . . . . . . . . 10
| |
| 49 | 47, 29, 48 | syl2anc 693 |
. . . . . . . . 9
|
| 50 | 6, 7, 8 | cvlatexchb1 34621 |
. . . . . . . . 9
|
| 51 | 22, 44, 38, 4, 49, 50 | syl131anc 1339 |
. . . . . . . 8
|
| 52 | 43, 51 | mpbid 222 |
. . . . . . 7
|
| 53 | 37, 52 | sylan9eqr 2678 |
. . . . . 6
|
| 54 | 35, 53 | eqtr3d 2658 |
. . . . 5
|
| 55 | 11, 54 | breqtrd 4679 |
. . . 4
|
| 56 | 55 | ex 450 |
. . 3
|
| 57 | 56 | necon3bd 2808 |
. 2
|
| 58 | 2, 57 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-lhyp 35274 |
| This theorem is referenced by: 4atexlemtlw 35353 4atexlemntlpq 35354 4atexlemc 35355 4atexlemnclw 35356 |
| Copyright terms: Public domain | W3C validator |