Proof of Theorem 4atexlemnclw
Step | Hyp | Ref
| Expression |
1 | | 4thatlem0.c |
. . . 4
  
    |
2 | | 4thatlem.ph |
. . . . . 6
     
    
 
    

     
      |
3 | 2 | 4atexlemkl 35343 |
. . . . 5
   |
4 | | 4thatlem0.j |
. . . . . 6
     |
5 | | 4thatlem0.a |
. . . . . 6
     |
6 | 2, 4, 5 | 4atexlemqtb 35347 |
. . . . 5
         |
7 | 2, 4, 5 | 4atexlempsb 35346 |
. . . . 5
         |
8 | | eqid 2622 |
. . . . . 6
         |
9 | | 4thatlem0.l |
. . . . . 6
     |
10 | | 4thatlem0.m |
. . . . . 6
     |
11 | 8, 9, 10 | latmle1 17076 |
. . . . 5
  
    
      
   
 
    |
12 | 3, 6, 7, 11 | syl3anc 1326 |
. . . 4
   
   
   |
13 | 1, 12 | syl5eqbr 4688 |
. . 3

    |
14 | | simp13r 1177 |
. . . . 5
     
    
 
    

     
   
  |
15 | 2, 14 | sylbi 207 |
. . . 4
   |
16 | 2 | 4atexlemkc 35344 |
. . . . . 6
   |
17 | | 4thatlem0.h |
. . . . . . 7
     |
18 | | 4thatlem0.u |
. . . . . . 7
  
  |
19 | | 4thatlem0.v |
. . . . . . 7
  
  |
20 | 2, 9, 4, 10, 5, 17, 18, 19 | 4atexlemv 35351 |
. . . . . 6
   |
21 | 2 | 4atexlemq 35337 |
. . . . . 6
   |
22 | 2 | 4atexlemt 35339 |
. . . . . 6
   |
23 | 2, 9, 4, 10, 5, 17, 18 | 4atexlemu 35350 |
. . . . . . 7
   |
24 | 2, 9, 4, 10, 5, 17, 18, 19 | 4atexlemunv 35352 |
. . . . . . 7
   |
25 | 2 | 4atexlemutvt 35340 |
. . . . . . 7
       |
26 | 5, 4 | cvlsupr6 34634 |
. . . . . . . 8
  
       
  |
27 | 26 | necomd 2849 |
. . . . . . 7
  
       
  |
28 | 16, 23, 20, 22, 24, 25, 27 | syl132anc 1344 |
. . . . . 6
   |
29 | 9, 4, 5 | cvlatexch2 34624 |
. . . . . 6
  


  
     |
30 | 16, 20, 21, 22, 28, 29 | syl131anc 1339 |
. . . . 5
         |
31 | 2, 17 | 4atexlemwb 35345 |
. . . . . . . . 9
       |
32 | 8, 9, 10 | latmle2 17077 |
. . . . . . . . 9
  
    
    
   
  |
33 | 3, 7, 31, 32 | syl3anc 1326 |
. . . . . . . 8
   
   |
34 | 19, 33 | syl5eqbr 4688 |
. . . . . . 7

  |
35 | 2, 9, 4, 10, 5, 17, 18, 19 | 4atexlemtlw 35353 |
. . . . . . 7

  |
36 | 8, 5 | atbase 34576 |
. . . . . . . . 9
       |
37 | 20, 36 | syl 17 |
. . . . . . . 8
       |
38 | 8, 5 | atbase 34576 |
. . . . . . . . 9
       |
39 | 22, 38 | syl 17 |
. . . . . . . 8
       |
40 | 8, 9, 4 | latjle12 17062 |
. . . . . . . 8
  
   
                  |
41 | 3, 37, 39, 31, 40 | syl13anc 1328 |
. . . . . . 7
         |
42 | 34, 35, 41 | mpbi2and 956 |
. . . . . 6
     |
43 | 8, 5 | atbase 34576 |
. . . . . . . 8
       |
44 | 21, 43 | syl 17 |
. . . . . . 7
       |
45 | 2 | 4atexlemk 35333 |
. . . . . . . 8
   |
46 | 8, 4, 5 | hlatjcl 34653 |
. . . . . . . 8
 
         |
47 | 45, 20, 22, 46 | syl3anc 1326 |
. . . . . . 7
         |
48 | 8, 9 | lattr 17056 |
. . . . . . 7
  
    
    
          
     |
49 | 3, 44, 47, 31, 48 | syl13anc 1328 |
. . . . . 6
      

   |
50 | 42, 49 | mpan2d 710 |
. . . . 5
       |
51 | 30, 50 | syld 47 |
. . . 4
       |
52 | 15, 51 | mtod 189 |
. . 3
     |
53 | | nbrne2 4673 |
. . 3
 
       |
54 | 13, 52, 53 | syl2anc 693 |
. 2
   |
55 | 2 | 4atexlemw 35334 |
. . . 4
   |
56 | 45, 55 | jca 554 |
. . 3
     |
57 | 2 | 4atexlempw 35335 |
. . 3
     |
58 | 2 | 4atexlems 35338 |
. . 3
   |
59 | 2, 9, 4, 10, 5, 17, 18, 19, 1 | 4atexlemc 35355 |
. . 3
   |
60 | 2, 9, 4, 5 | 4atexlempns 35348 |
. . 3
   |
61 | 8, 9, 10 | latmle2 17077 |
. . . . 5
  
    
      
   
 
    |
62 | 3, 6, 7, 61 | syl3anc 1326 |
. . . 4
   
   
   |
63 | 1, 62 | syl5eqbr 4688 |
. . 3

    |
64 | 9, 4, 10, 5, 17, 19 | lhpat3 35332 |
. . 3
     
             |
65 | 56, 57, 58, 59, 60, 63, 64 | syl222anc 1342 |
. 2
     |
66 | 54, 65 | mpbird 247 |
1
   |