| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 4atlem12 | Structured version Visualization version Unicode version | ||
| Description: Lemma for 4at 34899. Combine all four possible cases. (Contributed by NM, 11-Jul-2012.) |
| Ref | Expression |
|---|---|
| 4at.l |
|
| 4at.j |
|
| 4at.a |
|
| Ref | Expression |
|---|---|
| 4atlem12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl11 1136 |
. . . . . 6
| |
| 2 | hllat 34650 |
. . . . . 6
| |
| 3 | 1, 2 | syl 17 |
. . . . 5
|
| 4 | simpl12 1137 |
. . . . . 6
| |
| 5 | eqid 2622 |
. . . . . . 7
| |
| 6 | 4at.a |
. . . . . . 7
| |
| 7 | 5, 6 | atbase 34576 |
. . . . . 6
|
| 8 | 4, 7 | syl 17 |
. . . . 5
|
| 9 | simpl13 1138 |
. . . . . 6
| |
| 10 | 5, 6 | atbase 34576 |
. . . . . 6
|
| 11 | 9, 10 | syl 17 |
. . . . 5
|
| 12 | simpl23 1141 |
. . . . . . 7
| |
| 13 | simpl31 1142 |
. . . . . . 7
| |
| 14 | 4at.j |
. . . . . . . 8
| |
| 15 | 5, 14, 6 | hlatjcl 34653 |
. . . . . . 7
|
| 16 | 1, 12, 13, 15 | syl3anc 1326 |
. . . . . 6
|
| 17 | simpl32 1143 |
. . . . . . 7
| |
| 18 | simpl33 1144 |
. . . . . . 7
| |
| 19 | 5, 14, 6 | hlatjcl 34653 |
. . . . . . 7
|
| 20 | 1, 17, 18, 19 | syl3anc 1326 |
. . . . . 6
|
| 21 | 5, 14 | latjcl 17051 |
. . . . . 6
|
| 22 | 3, 16, 20, 21 | syl3anc 1326 |
. . . . 5
|
| 23 | 4at.l |
. . . . . 6
| |
| 24 | 5, 23, 14 | latjle12 17062 |
. . . . 5
|
| 25 | 3, 8, 11, 22, 24 | syl13anc 1328 |
. . . 4
|
| 26 | simpl21 1139 |
. . . . . 6
| |
| 27 | 5, 6 | atbase 34576 |
. . . . . 6
|
| 28 | 26, 27 | syl 17 |
. . . . 5
|
| 29 | simpl22 1140 |
. . . . . 6
| |
| 30 | 5, 6 | atbase 34576 |
. . . . . 6
|
| 31 | 29, 30 | syl 17 |
. . . . 5
|
| 32 | 5, 23, 14 | latjle12 17062 |
. . . . 5
|
| 33 | 3, 28, 31, 22, 32 | syl13anc 1328 |
. . . 4
|
| 34 | 25, 33 | anbi12d 747 |
. . 3
|
| 35 | simpl1 1064 |
. . . . 5
| |
| 36 | 5, 14, 6 | hlatjcl 34653 |
. . . . 5
|
| 37 | 35, 36 | syl 17 |
. . . 4
|
| 38 | 5, 14, 6 | hlatjcl 34653 |
. . . . 5
|
| 39 | 1, 26, 29, 38 | syl3anc 1326 |
. . . 4
|
| 40 | 5, 23, 14 | latjle12 17062 |
. . . 4
|
| 41 | 3, 37, 39, 22, 40 | syl13anc 1328 |
. . 3
|
| 42 | 34, 41 | bitrd 268 |
. 2
|
| 43 | simp1l 1085 |
. . . . . 6
| |
| 44 | simp1r 1086 |
. . . . . 6
| |
| 45 | simp2 1062 |
. . . . . 6
| |
| 46 | simp3 1063 |
. . . . . 6
| |
| 47 | 23, 14, 6 | 4atlem12b 34897 |
. . . . . 6
|
| 48 | 43, 44, 45, 46, 47 | syl121anc 1331 |
. . . . 5
|
| 49 | 48 | 3exp 1264 |
. . . 4
|
| 50 | 5, 14 | latj4rot 17102 |
. . . . . . . 8
|
| 51 | 3, 11, 28, 31, 8, 50 | syl122anc 1335 |
. . . . . . 7
|
| 52 | 51 | 3ad2ant1 1082 |
. . . . . 6
|
| 53 | 1, 9, 26 | 3jca 1242 |
. . . . . . . . 9
|
| 54 | 29, 4, 12 | 3jca 1242 |
. . . . . . . . 9
|
| 55 | simpl3 1066 |
. . . . . . . . 9
| |
| 56 | 53, 54, 55 | 3jca 1242 |
. . . . . . . 8
|
| 57 | 56 | 3ad2ant1 1082 |
. . . . . . 7
|
| 58 | simpr 477 |
. . . . . . . . 9
| |
| 59 | 23, 14, 6 | 4noncolr3 34739 |
. . . . . . . . 9
|
| 60 | 35, 26, 29, 58, 59 | syl121anc 1331 |
. . . . . . . 8
|
| 61 | 60 | 3ad2ant1 1082 |
. . . . . . 7
|
| 62 | simp2 1062 |
. . . . . . 7
| |
| 63 | simprlr 803 |
. . . . . . . . . 10
| |
| 64 | simprrl 804 |
. . . . . . . . . 10
| |
| 65 | 63, 64 | jca 554 |
. . . . . . . . 9
|
| 66 | simprrr 805 |
. . . . . . . . 9
| |
| 67 | simprll 802 |
. . . . . . . . 9
| |
| 68 | 65, 66, 67 | jca32 558 |
. . . . . . . 8
|
| 69 | 68 | 3adant2 1080 |
. . . . . . 7
|
| 70 | 23, 14, 6 | 4atlem12b 34897 |
. . . . . . 7
|
| 71 | 57, 61, 62, 69, 70 | syl121anc 1331 |
. . . . . 6
|
| 72 | 52, 71 | eqtr3d 2658 |
. . . . 5
|
| 73 | 72 | 3exp 1264 |
. . . 4
|
| 74 | 49, 73 | jaod 395 |
. . 3
|
| 75 | 5, 14 | latjcom 17059 |
. . . . . . . 8
|
| 76 | 3, 37, 39, 75 | syl3anc 1326 |
. . . . . . 7
|
| 77 | 76 | 3ad2ant1 1082 |
. . . . . 6
|
| 78 | 1, 26, 29 | 3jca 1242 |
. . . . . . . . 9
|
| 79 | 4, 9, 12 | 3jca 1242 |
. . . . . . . . 9
|
| 80 | 78, 79, 55 | 3jca 1242 |
. . . . . . . 8
|
| 81 | 80 | 3ad2ant1 1082 |
. . . . . . 7
|
| 82 | 23, 14, 6 | 4noncolr2 34740 |
. . . . . . . . 9
|
| 83 | 35, 26, 29, 58, 82 | syl121anc 1331 |
. . . . . . . 8
|
| 84 | 83 | 3ad2ant1 1082 |
. . . . . . 7
|
| 85 | simp2 1062 |
. . . . . . 7
| |
| 86 | simprr 796 |
. . . . . . . . 9
| |
| 87 | simprl 794 |
. . . . . . . . 9
| |
| 88 | 86, 87 | jca 554 |
. . . . . . . 8
|
| 89 | 88 | 3adant2 1080 |
. . . . . . 7
|
| 90 | 23, 14, 6 | 4atlem12b 34897 |
. . . . . . 7
|
| 91 | 81, 84, 85, 89, 90 | syl121anc 1331 |
. . . . . 6
|
| 92 | 77, 91 | eqtrd 2656 |
. . . . 5
|
| 93 | 92 | 3exp 1264 |
. . . 4
|
| 94 | 5, 14 | latj4rot 17102 |
. . . . . . . 8
|
| 95 | 3, 8, 11, 28, 31, 94 | syl122anc 1335 |
. . . . . . 7
|
| 96 | 95 | 3ad2ant1 1082 |
. . . . . 6
|
| 97 | 1, 29, 4 | 3jca 1242 |
. . . . . . . . 9
|
| 98 | 9, 26, 12 | 3jca 1242 |
. . . . . . . . 9
|
| 99 | 97, 98, 55 | 3jca 1242 |
. . . . . . . 8
|
| 100 | 99 | 3ad2ant1 1082 |
. . . . . . 7
|
| 101 | 23, 14, 6 | 4noncolr1 34741 |
. . . . . . . . 9
|
| 102 | 35, 26, 29, 58, 101 | syl121anc 1331 |
. . . . . . . 8
|
| 103 | 102 | 3ad2ant1 1082 |
. . . . . . 7
|
| 104 | simp2 1062 |
. . . . . . 7
| |
| 105 | 66, 67 | jca 554 |
. . . . . . . . 9
|
| 106 | 105, 63, 64 | jca32 558 |
. . . . . . . 8
|
| 107 | 106 | 3adant2 1080 |
. . . . . . 7
|
| 108 | 23, 14, 6 | 4atlem12b 34897 |
. . . . . . 7
|
| 109 | 100, 103, 104, 107, 108 | syl121anc 1331 |
. . . . . 6
|
| 110 | 96, 109 | eqtrd 2656 |
. . . . 5
|
| 111 | 110 | 3exp 1264 |
. . . 4
|
| 112 | 93, 111 | jaod 395 |
. . 3
|
| 113 | 26, 29, 13 | 3jca 1242 |
. . . 4
|
| 114 | 17, 18 | jca 554 |
. . . 4
|
| 115 | 23, 14, 6 | 4atlem3 34882 |
. . . 4
|
| 116 | 35, 113, 114, 58, 115 | syl31anc 1329 |
. . 3
|
| 117 | 74, 112, 116 | mpjaod 396 |
. 2
|
| 118 | 42, 117 | sylbird 250 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 |
| This theorem is referenced by: 4at 34899 |
| Copyright terms: Public domain | W3C validator |