MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvtri Structured version   Visualization version   Unicode version

Theorem abvtri 18830
Description: An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a  |-  A  =  (AbsVal `  R )
abvf.b  |-  B  =  ( Base `  R
)
abvtri.p  |-  .+  =  ( +g  `  R )
Assertion
Ref Expression
abvtri  |-  ( ( F  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .+  Y ) )  <_  ( ( F `
 X )  +  ( F `  Y
) ) )

Proof of Theorem abvtri
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvf.a . . . . . . . 8  |-  A  =  (AbsVal `  R )
21abvrcl 18821 . . . . . . 7  |-  ( F  e.  A  ->  R  e.  Ring )
3 abvf.b . . . . . . . 8  |-  B  =  ( Base `  R
)
4 abvtri.p . . . . . . . 8  |-  .+  =  ( +g  `  R )
5 eqid 2622 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
6 eqid 2622 . . . . . . . 8  |-  ( 0g
`  R )  =  ( 0g `  R
)
71, 3, 4, 5, 6isabv 18819 . . . . . . 7  |-  ( R  e.  Ring  ->  ( F  e.  A  <->  ( F : B --> ( 0 [,) +oo )  /\  A. x  e.  B  ( (
( F `  x
)  =  0  <->  x  =  ( 0g `  R ) )  /\  A. y  e.  B  ( ( F `  (
x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y ) )  /\  ( F `  ( x 
.+  y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) ) ) ) ) )
82, 7syl 17 . . . . . 6  |-  ( F  e.  A  ->  ( F  e.  A  <->  ( F : B --> ( 0 [,) +oo )  /\  A. x  e.  B  ( (
( F `  x
)  =  0  <->  x  =  ( 0g `  R ) )  /\  A. y  e.  B  ( ( F `  (
x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y ) )  /\  ( F `  ( x 
.+  y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) ) ) ) ) )
98ibi 256 . . . . 5  |-  ( F  e.  A  ->  ( F : B --> ( 0 [,) +oo )  /\  A. x  e.  B  ( ( ( F `  x )  =  0  <-> 
x  =  ( 0g
`  R ) )  /\  A. y  e.  B  ( ( F `
 ( x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y )
)  /\  ( F `  ( x  .+  y
) )  <_  (
( F `  x
)  +  ( F `
 y ) ) ) ) ) )
109simprd 479 . . . 4  |-  ( F  e.  A  ->  A. x  e.  B  ( (
( F `  x
)  =  0  <->  x  =  ( 0g `  R ) )  /\  A. y  e.  B  ( ( F `  (
x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y ) )  /\  ( F `  ( x 
.+  y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) ) ) )
11 simpr 477 . . . . . . 7  |-  ( ( ( F `  (
x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y ) )  /\  ( F `  ( x 
.+  y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) )  -> 
( F `  (
x  .+  y )
)  <_  ( ( F `  x )  +  ( F `  y ) ) )
1211ralimi 2952 . . . . . 6  |-  ( A. y  e.  B  (
( F `  (
x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y ) )  /\  ( F `  ( x 
.+  y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) )  ->  A. y  e.  B  ( F `  ( x 
.+  y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) )
1312adantl 482 . . . . 5  |-  ( ( ( ( F `  x )  =  0  <-> 
x  =  ( 0g
`  R ) )  /\  A. y  e.  B  ( ( F `
 ( x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y )
)  /\  ( F `  ( x  .+  y
) )  <_  (
( F `  x
)  +  ( F `
 y ) ) ) )  ->  A. y  e.  B  ( F `  ( x  .+  y
) )  <_  (
( F `  x
)  +  ( F `
 y ) ) )
1413ralimi 2952 . . . 4  |-  ( A. x  e.  B  (
( ( F `  x )  =  0  <-> 
x  =  ( 0g
`  R ) )  /\  A. y  e.  B  ( ( F `
 ( x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y )
)  /\  ( F `  ( x  .+  y
) )  <_  (
( F `  x
)  +  ( F `
 y ) ) ) )  ->  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y
) )  <_  (
( F `  x
)  +  ( F `
 y ) ) )
1510, 14syl 17 . . 3  |-  ( F  e.  A  ->  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y
) )  <_  (
( F `  x
)  +  ( F `
 y ) ) )
16 oveq1 6657 . . . . . 6  |-  ( x  =  X  ->  (
x  .+  y )  =  ( X  .+  y ) )
1716fveq2d 6195 . . . . 5  |-  ( x  =  X  ->  ( F `  ( x  .+  y ) )  =  ( F `  ( X  .+  y ) ) )
18 fveq2 6191 . . . . . 6  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
1918oveq1d 6665 . . . . 5  |-  ( x  =  X  ->  (
( F `  x
)  +  ( F `
 y ) )  =  ( ( F `
 X )  +  ( F `  y
) ) )
2017, 19breq12d 4666 . . . 4  |-  ( x  =  X  ->  (
( F `  (
x  .+  y )
)  <_  ( ( F `  x )  +  ( F `  y ) )  <->  ( F `  ( X  .+  y
) )  <_  (
( F `  X
)  +  ( F `
 y ) ) ) )
21 oveq2 6658 . . . . . 6  |-  ( y  =  Y  ->  ( X  .+  y )  =  ( X  .+  Y
) )
2221fveq2d 6195 . . . . 5  |-  ( y  =  Y  ->  ( F `  ( X  .+  y ) )  =  ( F `  ( X  .+  Y ) ) )
23 fveq2 6191 . . . . . 6  |-  ( y  =  Y  ->  ( F `  y )  =  ( F `  Y ) )
2423oveq2d 6666 . . . . 5  |-  ( y  =  Y  ->  (
( F `  X
)  +  ( F `
 y ) )  =  ( ( F `
 X )  +  ( F `  Y
) ) )
2522, 24breq12d 4666 . . . 4  |-  ( y  =  Y  ->  (
( F `  ( X  .+  y ) )  <_  ( ( F `
 X )  +  ( F `  y
) )  <->  ( F `  ( X  .+  Y
) )  <_  (
( F `  X
)  +  ( F `
 Y ) ) ) )
2620, 25rspc2v 3322 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  <_  ( ( F `  x )  +  ( F `  y ) )  -> 
( F `  ( X  .+  Y ) )  <_  ( ( F `
 X )  +  ( F `  Y
) ) ) )
2715, 26syl5com 31 . 2  |-  ( F  e.  A  ->  (
( X  e.  B  /\  Y  e.  B
)  ->  ( F `  ( X  .+  Y
) )  <_  (
( F `  X
)  +  ( F `
 Y ) ) ) )
28273impib 1262 1  |-  ( ( F  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .+  Y ) )  <_  ( ( F `
 X )  +  ( F `  Y
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936    + caddc 9939    x. cmul 9941   +oocpnf 10071    <_ cle 10075   [,)cico 12177   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   0gc0g 16100   Ringcrg 18547  AbsValcabv 18816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-abv 18817
This theorem is referenced by:  abvsubtri  18835  abvres  18839  abvcxp  25304  qabvle  25314  ostth2lem2  25323  ostth3  25327
  Copyright terms: Public domain W3C validator