MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth3 Structured version   Visualization version   Unicode version

Theorem ostth3 25327
Description: - Lemma for ostth 25328: p-adic case. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
padic.j  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
ostth.k  |-  K  =  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  1 ) )
ostth.1  |-  ( ph  ->  F  e.  A )
ostth3.2  |-  ( ph  ->  A. n  e.  NN  -.  1  <  ( F `
 n ) )
ostth3.3  |-  ( ph  ->  P  e.  Prime )
ostth3.4  |-  ( ph  ->  ( F `  P
)  <  1 )
ostth3.5  |-  R  = 
-u ( ( log `  ( F `  P
) )  /  ( log `  P ) )
ostth3.6  |-  S  =  if ( ( F `
 P )  <_ 
( F `  p
) ,  ( F `
 p ) ,  ( F `  P
) )
Assertion
Ref Expression
ostth3  |-  ( ph  ->  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  a ) ) )
Distinct variable groups:    n, p, y    n, K    x, n, a, p, q, y, ph    J, a, p, y    S, a    A, a, n, p, q, x, y    Q, n, x, y    F, a, n, p, q, y    P, a, p, q, x, y    R, a, p, q, y    x, F
Allowed substitution hints:    P( n)    Q( q, p, a)    R( x, n)    S( x, y, n, q, p)    J( x, n, q)    K( x, y, q, p, a)

Proof of Theorem ostth3
Dummy variables  k 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ostth3.5 . . . 4  |-  R  = 
-u ( ( log `  ( F `  P
) )  /  ( log `  P ) )
2 ostth.1 . . . . . . . . 9  |-  ( ph  ->  F  e.  A )
3 ostth3.3 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  Prime )
4 prmuz2 15408 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
53, 4syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  ( ZZ>= ` 
2 ) )
6 eluz2b2 11761 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
75, 6sylib 208 . . . . . . . . . . 11  |-  ( ph  ->  ( P  e.  NN  /\  1  <  P ) )
87simpld 475 . . . . . . . . . 10  |-  ( ph  ->  P  e.  NN )
9 nnq 11801 . . . . . . . . . 10  |-  ( P  e.  NN  ->  P  e.  QQ )
108, 9syl 17 . . . . . . . . 9  |-  ( ph  ->  P  e.  QQ )
11 qabsabv.a . . . . . . . . . 10  |-  A  =  (AbsVal `  Q )
12 qrng.q . . . . . . . . . . 11  |-  Q  =  (flds  QQ )
1312qrngbas 25308 . . . . . . . . . 10  |-  QQ  =  ( Base `  Q )
1411, 13abvcl 18824 . . . . . . . . 9  |-  ( ( F  e.  A  /\  P  e.  QQ )  ->  ( F `  P
)  e.  RR )
152, 10, 14syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( F `  P
)  e.  RR )
168nnne0d 11065 . . . . . . . . 9  |-  ( ph  ->  P  =/=  0 )
1712qrng0 25310 . . . . . . . . . 10  |-  0  =  ( 0g `  Q )
1811, 13, 17abvgt0 18828 . . . . . . . . 9  |-  ( ( F  e.  A  /\  P  e.  QQ  /\  P  =/=  0 )  ->  0  <  ( F `  P
) )
192, 10, 16, 18syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  0  <  ( F `
 P ) )
2015, 19elrpd 11869 . . . . . . 7  |-  ( ph  ->  ( F `  P
)  e.  RR+ )
2120relogcld 24369 . . . . . 6  |-  ( ph  ->  ( log `  ( F `  P )
)  e.  RR )
228nnred 11035 . . . . . . 7  |-  ( ph  ->  P  e.  RR )
237simprd 479 . . . . . . 7  |-  ( ph  ->  1  <  P )
2422, 23rplogcld 24375 . . . . . 6  |-  ( ph  ->  ( log `  P
)  e.  RR+ )
2521, 24rerpdivcld 11903 . . . . 5  |-  ( ph  ->  ( ( log `  ( F `  P )
)  /  ( log `  P ) )  e.  RR )
2625renegcld 10457 . . . 4  |-  ( ph  -> 
-u ( ( log `  ( F `  P
) )  /  ( log `  P ) )  e.  RR )
271, 26syl5eqel 2705 . . 3  |-  ( ph  ->  R  e.  RR )
28 ostth3.4 . . . . . . . . 9  |-  ( ph  ->  ( F `  P
)  <  1 )
29 1rp 11836 . . . . . . . . . 10  |-  1  e.  RR+
30 logltb 24346 . . . . . . . . . 10  |-  ( ( ( F `  P
)  e.  RR+  /\  1  e.  RR+ )  ->  (
( F `  P
)  <  1  <->  ( log `  ( F `  P
) )  <  ( log `  1 ) ) )
3120, 29, 30sylancl 694 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  P )  <  1  <->  ( log `  ( F `
 P ) )  <  ( log `  1
) ) )
3228, 31mpbid 222 . . . . . . . 8  |-  ( ph  ->  ( log `  ( F `  P )
)  <  ( log `  1 ) )
33 log1 24332 . . . . . . . 8  |-  ( log `  1 )  =  0
3432, 33syl6breq 4694 . . . . . . 7  |-  ( ph  ->  ( log `  ( F `  P )
)  <  0 )
3524rpcnd 11874 . . . . . . . 8  |-  ( ph  ->  ( log `  P
)  e.  CC )
3635mul01d 10235 . . . . . . 7  |-  ( ph  ->  ( ( log `  P
)  x.  0 )  =  0 )
3734, 36breqtrrd 4681 . . . . . 6  |-  ( ph  ->  ( log `  ( F `  P )
)  <  ( ( log `  P )  x.  0 ) )
38 0red 10041 . . . . . . 7  |-  ( ph  ->  0  e.  RR )
3921, 38, 24ltdivmuld 11923 . . . . . 6  |-  ( ph  ->  ( ( ( log `  ( F `  P
) )  /  ( log `  P ) )  <  0  <->  ( log `  ( F `  P
) )  <  (
( log `  P
)  x.  0 ) ) )
4037, 39mpbird 247 . . . . 5  |-  ( ph  ->  ( ( log `  ( F `  P )
)  /  ( log `  P ) )  <  0 )
4125lt0neg1d 10597 . . . . 5  |-  ( ph  ->  ( ( ( log `  ( F `  P
) )  /  ( log `  P ) )  <  0  <->  0  <  -u ( ( log `  ( F `  P )
)  /  ( log `  P ) ) ) )
4240, 41mpbid 222 . . . 4  |-  ( ph  ->  0  <  -u (
( log `  ( F `  P )
)  /  ( log `  P ) ) )
4342, 1syl6breqr 4695 . . 3  |-  ( ph  ->  0  <  R )
4427, 43elrpd 11869 . 2  |-  ( ph  ->  R  e.  RR+ )
45 padic.j . . . . 5  |-  J  =  ( q  e.  Prime  |->  ( x  e.  QQ  |->  if ( x  =  0 ,  0 ,  ( q ^ -u (
q  pCnt  x )
) ) ) )
4612, 11, 45padicabvcxp 25321 . . . 4  |-  ( ( P  e.  Prime  /\  R  e.  RR+ )  ->  (
y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^c  R ) )  e.  A
)
473, 44, 46syl2anc 693 . . 3  |-  ( ph  ->  ( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) )  e.  A )
48 fveq2 6191 . . . . . . . . . 10  |-  ( y  =  P  ->  (
( J `  P
) `  y )  =  ( ( J `
 P ) `  P ) )
4948oveq1d 6665 . . . . . . . . 9  |-  ( y  =  P  ->  (
( ( J `  P ) `  y
)  ^c  R )  =  ( ( ( J `  P
) `  P )  ^c  R )
)
50 eqid 2622 . . . . . . . . 9  |-  ( y  e.  QQ  |->  ( ( ( J `  P
) `  y )  ^c  R )
)  =  ( y  e.  QQ  |->  ( ( ( J `  P
) `  y )  ^c  R )
)
51 ovex 6678 . . . . . . . . 9  |-  ( ( ( J `  P
) `  P )  ^c  R )  e.  _V
5249, 50, 51fvmpt 6282 . . . . . . . 8  |-  ( P  e.  QQ  ->  (
( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  P )  =  ( ( ( J `  P ) `  P
)  ^c  R ) )
5310, 52syl 17 . . . . . . 7  |-  ( ph  ->  ( ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  R ) ) `  P )  =  ( ( ( J `  P ) `  P
)  ^c  R ) )
5445padicval 25306 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  P  e.  QQ )  ->  (
( J `  P
) `  P )  =  if ( P  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  P ) ) ) )
553, 10, 54syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( ( J `  P ) `  P
)  =  if ( P  =  0 ,  0 ,  ( P ^ -u ( P 
pCnt  P ) ) ) )
5616neneqd 2799 . . . . . . . . . 10  |-  ( ph  ->  -.  P  =  0 )
5756iffalsed 4097 . . . . . . . . 9  |-  ( ph  ->  if ( P  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  P ) ) )  =  ( P ^ -u ( P 
pCnt  P ) ) )
588nncnd 11036 . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e.  CC )
5958exp1d 13003 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( P ^ 1 )  =  P )
6059oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P  pCnt  ( P ^ 1 ) )  =  ( P  pCnt  P ) )
61 1z 11407 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
62 pcid 15577 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  1  e.  ZZ )  ->  ( P  pCnt  ( P ^
1 ) )  =  1 )
633, 61, 62sylancl 694 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P  pCnt  ( P ^ 1 ) )  =  1 )
6460, 63eqtr3d 2658 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  pCnt  P
)  =  1 )
6564negeqd 10275 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( P  pCnt  P )  =  -u 1
)
6665oveq2d 6666 . . . . . . . . . 10  |-  ( ph  ->  ( P ^ -u ( P  pCnt  P ) )  =  ( P ^ -u 1 ) )
67 neg1z 11413 . . . . . . . . . . . 12  |-  -u 1  e.  ZZ
6867a1i 11 . . . . . . . . . . 11  |-  ( ph  -> 
-u 1  e.  ZZ )
6958, 16, 68cxpexpzd 24457 . . . . . . . . . 10  |-  ( ph  ->  ( P  ^c  -u 1 )  =  ( P ^ -u 1
) )
7066, 69eqtr4d 2659 . . . . . . . . 9  |-  ( ph  ->  ( P ^ -u ( P  pCnt  P ) )  =  ( P  ^c  -u 1 ) )
7155, 57, 703eqtrd 2660 . . . . . . . 8  |-  ( ph  ->  ( ( J `  P ) `  P
)  =  ( P  ^c  -u 1
) )
7271oveq1d 6665 . . . . . . 7  |-  ( ph  ->  ( ( ( J `
 P ) `  P )  ^c  R )  =  ( ( P  ^c  -u 1 )  ^c  R ) )
7327recnd 10068 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  CC )
7473mulm1d 10482 . . . . . . . . . 10  |-  ( ph  ->  ( -u 1  x.  R )  =  -u R )
751negeqi 10274 . . . . . . . . . . 11  |-  -u R  =  -u -u ( ( log `  ( F `  P
) )  /  ( log `  P ) )
7625recnd 10068 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( log `  ( F `  P )
)  /  ( log `  P ) )  e.  CC )
7776negnegd 10383 . . . . . . . . . . 11  |-  ( ph  -> 
-u -u ( ( log `  ( F `  P
) )  /  ( log `  P ) )  =  ( ( log `  ( F `  P
) )  /  ( log `  P ) ) )
7875, 77syl5eq 2668 . . . . . . . . . 10  |-  ( ph  -> 
-u R  =  ( ( log `  ( F `  P )
)  /  ( log `  P ) ) )
7974, 78eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( -u 1  x.  R )  =  ( ( log `  ( F `  P )
)  /  ( log `  P ) ) )
8079oveq2d 6666 . . . . . . . 8  |-  ( ph  ->  ( P  ^c 
( -u 1  x.  R
) )  =  ( P  ^c  ( ( log `  ( F `  P )
)  /  ( log `  P ) ) ) )
818nnrpd 11870 . . . . . . . . 9  |-  ( ph  ->  P  e.  RR+ )
82 neg1rr 11125 . . . . . . . . . 10  |-  -u 1  e.  RR
8382a1i 11 . . . . . . . . 9  |-  ( ph  -> 
-u 1  e.  RR )
8481, 83, 73cxpmuld 24480 . . . . . . . 8  |-  ( ph  ->  ( P  ^c 
( -u 1  x.  R
) )  =  ( ( P  ^c  -u 1 )  ^c  R ) )
8558, 16, 76cxpefd 24458 . . . . . . . . 9  |-  ( ph  ->  ( P  ^c 
( ( log `  ( F `  P )
)  /  ( log `  P ) ) )  =  ( exp `  (
( ( log `  ( F `  P )
)  /  ( log `  P ) )  x.  ( log `  P
) ) ) )
8621recnd 10068 . . . . . . . . . . 11  |-  ( ph  ->  ( log `  ( F `  P )
)  e.  CC )
8724rpne0d 11877 . . . . . . . . . . 11  |-  ( ph  ->  ( log `  P
)  =/=  0 )
8886, 35, 87divcan1d 10802 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( log `  ( F `  P
) )  /  ( log `  P ) )  x.  ( log `  P
) )  =  ( log `  ( F `
 P ) ) )
8988fveq2d 6195 . . . . . . . . 9  |-  ( ph  ->  ( exp `  (
( ( log `  ( F `  P )
)  /  ( log `  P ) )  x.  ( log `  P
) ) )  =  ( exp `  ( log `  ( F `  P ) ) ) )
9020reeflogd 24370 . . . . . . . . 9  |-  ( ph  ->  ( exp `  ( log `  ( F `  P ) ) )  =  ( F `  P ) )
9185, 89, 903eqtrd 2660 . . . . . . . 8  |-  ( ph  ->  ( P  ^c 
( ( log `  ( F `  P )
)  /  ( log `  P ) ) )  =  ( F `  P ) )
9280, 84, 913eqtr3d 2664 . . . . . . 7  |-  ( ph  ->  ( ( P  ^c  -u 1 )  ^c  R )  =  ( F `  P ) )
9353, 72, 923eqtrrd 2661 . . . . . 6  |-  ( ph  ->  ( F `  P
)  =  ( ( y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^c  R ) ) `  P
) )
94 fveq2 6191 . . . . . . 7  |-  ( P  =  p  ->  ( F `  P )  =  ( F `  p ) )
95 fveq2 6191 . . . . . . 7  |-  ( P  =  p  ->  (
( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  P )  =  ( ( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p ) )
9694, 95eqeq12d 2637 . . . . . 6  |-  ( P  =  p  ->  (
( F `  P
)  =  ( ( y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^c  R ) ) `  P
)  <->  ( F `  p )  =  ( ( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p ) ) )
9793, 96syl5ibcom 235 . . . . 5  |-  ( ph  ->  ( P  =  p  ->  ( F `  p )  =  ( ( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p ) ) )
9897adantr 481 . . . 4  |-  ( (
ph  /\  p  e.  Prime )  ->  ( P  =  p  ->  ( F `
 p )  =  ( ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  R ) ) `  p ) ) )
99 prmnn 15388 . . . . . . . . 9  |-  ( p  e.  Prime  ->  p  e.  NN )
10099ad2antlr 763 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  p  e.  NN )
101 nnq 11801 . . . . . . . 8  |-  ( p  e.  NN  ->  p  e.  QQ )
102100, 101syl 17 . . . . . . 7  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  p  e.  QQ )
103 fveq2 6191 . . . . . . . . 9  |-  ( y  =  p  ->  (
( J `  P
) `  y )  =  ( ( J `
 P ) `  p ) )
104103oveq1d 6665 . . . . . . . 8  |-  ( y  =  p  ->  (
( ( J `  P ) `  y
)  ^c  R )  =  ( ( ( J `  P
) `  p )  ^c  R )
)
105 ovex 6678 . . . . . . . 8  |-  ( ( ( J `  P
) `  p )  ^c  R )  e.  _V
106104, 50, 105fvmpt 6282 . . . . . . 7  |-  ( p  e.  QQ  ->  (
( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p )  =  ( ( ( J `  P ) `  p
)  ^c  R ) )
107102, 106syl 17 . . . . . 6  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p )  =  ( ( ( J `  P ) `  p
)  ^c  R ) )
10873ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  R  e.  CC )
1091081cxpd 24453 . . . . . . 7  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
1  ^c  R )  =  1 )
1103ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  P  e.  Prime )
11145padicval 25306 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  p  e.  QQ )  ->  (
( J `  P
) `  p )  =  if ( p  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  p ) ) ) )
112110, 102, 111syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( J `  P
) `  p )  =  if ( p  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  p ) ) ) )
113100nnne0d 11065 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  p  =/=  0 )
114113neneqd 2799 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  -.  p  =  0 )
115114iffalsed 4097 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  if ( p  =  0 ,  0 ,  ( P ^ -u ( P  pCnt  p ) ) )  =  ( P ^ -u ( P 
pCnt  p ) ) )
116 pceq0 15575 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  p  e.  NN )  ->  (
( P  pCnt  p
)  =  0  <->  -.  P  ||  p ) )
1173, 99, 116syl2an 494 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  p  e.  Prime )  ->  ( ( P  pCnt  p )  =  0  <->  -.  P  ||  p
) )
118 dvdsprm 15415 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  p  e.  Prime )  ->  ( P  ||  p  <->  P  =  p ) )
1195, 118sylan 488 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  p  e.  Prime )  ->  ( P  ||  p  <->  P  =  p
) )
120119necon3bbid 2831 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  p  e.  Prime )  ->  ( -.  P  ||  p  <->  P  =/=  p ) )
121117, 120bitrd 268 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  p  e.  Prime )  ->  ( ( P  pCnt  p )  =  0  <->  P  =/=  p
) )
122121biimpar 502 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( P  pCnt  p )  =  0 )
123122negeqd 10275 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  -u ( P  pCnt  p )  = 
-u 0 )
124 neg0 10327 . . . . . . . . . . . 12  |-  -u 0  =  0
125123, 124syl6eq 2672 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  -u ( P  pCnt  p )  =  0 )
126125oveq2d 6666 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( P ^ -u ( P 
pCnt  p ) )  =  ( P ^ 0 ) )
12758ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  P  e.  CC )
128127exp0d 13002 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( P ^ 0 )  =  1 )
129126, 128eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( P ^ -u ( P 
pCnt  p ) )  =  1 )
130112, 115, 1293eqtrd 2660 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( J `  P
) `  p )  =  1 )
131130oveq1d 6665 . . . . . . 7  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( ( J `  P ) `  p
)  ^c  R )  =  ( 1  ^c  R ) )
132 2re 11090 . . . . . . . . . . . . 13  |-  2  e.  RR
133132a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
2  e.  RR )
134 ostth3.6 . . . . . . . . . . . . . 14  |-  S  =  if ( ( F `
 P )  <_ 
( F `  p
) ,  ( F `
 p ) ,  ( F `  P
) )
1352ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  F  e.  A )
13611, 13abvcl 18824 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  A  /\  p  e.  QQ )  ->  ( F `  p
)  e.  RR )
137135, 102, 136syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( F `  p )  e.  RR )
13811, 13, 17abvgt0 18828 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  A  /\  p  e.  QQ  /\  p  =/=  0 )  ->  0  <  ( F `  p
) )
139135, 102, 113, 138syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  0  <  ( F `  p
) )
140137, 139elrpd 11869 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( F `  p )  e.  RR+ )
141140adantrr 753 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( F `  p
)  e.  RR+ )
14220ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( F `  P
)  e.  RR+ )
143141, 142ifcld 4131 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  e.  RR+ )
144134, 143syl5eqel 2705 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  S  e.  RR+ )
145144rprecred 11883 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( 1  /  S
)  e.  RR )
146 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( F `  p
)  <  1 )
14728ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( F `  P
)  <  1 )
148 breq1 4656 . . . . . . . . . . . . . . . 16  |-  ( ( F `  p )  =  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  -> 
( ( F `  p )  <  1  <->  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  <  1 ) )
149 breq1 4656 . . . . . . . . . . . . . . . 16  |-  ( ( F `  P )  =  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  -> 
( ( F `  P )  <  1  <->  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  <  1 ) )
150148, 149ifboth 4124 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  p
)  <  1  /\  ( F `  P )  <  1 )  ->  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  <  1 )
151146, 147, 150syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  if ( ( F `  P )  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) )  <  1 )
152134, 151syl5eqbr 4688 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  S  <  1 )
153144reclt1d 11885 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( S  <  1  <->  1  <  ( 1  /  S ) ) )
154152, 153mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
1  <  ( 1  /  S ) )
155 expnbnd 12993 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  ( 1  /  S
)  e.  RR  /\  1  <  ( 1  /  S ) )  ->  E. k  e.  NN  2  <  ( ( 1  /  S ) ^
k ) )
156133, 145, 154, 155syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  E. k  e.  NN  2  <  ( ( 1  /  S ) ^
k ) )
157144rpcnd 11874 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  S  e.  CC )
158157adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  S  e.  CC )
159144rpne0d 11877 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  S  =/=  0 )
160159adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  S  =/=  0 )
161 nnz 11399 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  k  e.  ZZ )
162161adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  k  e.  ZZ )
163158, 160, 162exprecd 13016 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( 1  /  S
) ^ k )  =  ( 1  / 
( S ^ k
) ) )
1642ad3antrrr 766 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  F  e.  A )
165 ax-1ne0 10005 . . . . . . . . . . . . . . . . . 18  |-  1  =/=  0
16612qrng1 25311 . . . . . . . . . . . . . . . . . . 19  |-  1  =  ( 1r `  Q )
16711, 166, 17abv1z 18832 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  A  /\  1  =/=  0 )  -> 
( F `  1
)  =  1 )
168164, 165, 167sylancl 694 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( F `  1 )  =  1 )
1698ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  P  e.  NN )
170 nnnn0 11299 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  NN  ->  k  e.  NN0 )
171 nnexpcl 12873 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  e.  NN  /\  k  e.  NN0 )  -> 
( P ^ k
)  e.  NN )
172169, 170, 171syl2an 494 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( P ^ k )  e.  NN )
173172nnzd 11481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( P ^ k )  e.  ZZ )
17499ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  p  e.  NN )
175 nnexpcl 12873 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( p  e.  NN  /\  k  e.  NN0 )  -> 
( p ^ k
)  e.  NN )
176174, 170, 175syl2an 494 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
p ^ k )  e.  NN )
177176nnzd 11481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
p ^ k )  e.  ZZ )
178 bezout 15260 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P ^ k
)  e.  ZZ  /\  ( p ^ k
)  e.  ZZ )  ->  E. a  e.  ZZ  E. b  e.  ZZ  (
( P ^ k
)  gcd  ( p ^ k ) )  =  ( ( ( P ^ k )  x.  a )  +  ( ( p ^
k )  x.  b
) ) )
179173, 177, 178syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  E. a  e.  ZZ  E. b  e.  ZZ  ( ( P ^ k )  gcd  ( p ^ k
) )  =  ( ( ( P ^
k )  x.  a
)  +  ( ( p ^ k )  x.  b ) ) )
180 simprl 794 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  P  =/=  p )
1813ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  P  e.  Prime )
182 simplr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  p  e.  Prime )
183 prmrp 15424 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( P  e.  Prime  /\  p  e.  Prime )  ->  (
( P  gcd  p
)  =  1  <->  P  =/=  p ) )
184181, 182, 183syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( ( P  gcd  p )  =  1  <-> 
P  =/=  p ) )
185180, 184mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( P  gcd  p
)  =  1 )
186185adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( P  gcd  p )  =  1 )
187169adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  P  e.  NN )
188174adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  p  e.  NN )
189 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  k  e.  NN )
190 rppwr 15277 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( P  e.  NN  /\  p  e.  NN  /\  k  e.  NN )  ->  (
( P  gcd  p
)  =  1  -> 
( ( P ^
k )  gcd  (
p ^ k ) )  =  1 ) )
191187, 188, 189, 190syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( P  gcd  p
)  =  1  -> 
( ( P ^
k )  gcd  (
p ^ k ) )  =  1 ) )
192186, 191mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( P ^ k
)  gcd  ( p ^ k ) )  =  1 )
193192adantrr 753 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( P ^ k
)  gcd  ( p ^ k ) )  =  1 )
194193eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( P ^
k )  gcd  (
p ^ k ) )  =  ( ( ( P ^ k
)  x.  a )  +  ( ( p ^ k )  x.  b ) )  <->  1  =  ( ( ( P ^ k )  x.  a )  +  ( ( p ^ k
)  x.  b ) ) ) )
1952ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  F  e.  A )
196172adantrr 753 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( P ^ k )  e.  NN )
197 nnq 11801 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( P ^ k )  e.  NN  ->  ( P ^ k )  e.  QQ )
198196, 197syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( P ^ k )  e.  QQ )
199 simprrl 804 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  a  e.  ZZ )
200 zq 11794 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( a  e.  ZZ  ->  a  e.  QQ )
201199, 200syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  a  e.  QQ )
202 qmulcl 11806 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( P ^ k
)  e.  QQ  /\  a  e.  QQ )  ->  ( ( P ^
k )  x.  a
)  e.  QQ )
203198, 201, 202syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( P ^ k
)  x.  a )  e.  QQ )
204176adantrr 753 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
p ^ k )  e.  NN )
205 nnq 11801 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( p ^ k )  e.  NN  ->  (
p ^ k )  e.  QQ )
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
p ^ k )  e.  QQ )
207 simprrr 805 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  b  e.  ZZ )
208 zq 11794 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( b  e.  ZZ  ->  b  e.  QQ )
209207, 208syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  b  e.  QQ )
210 qmulcl 11806 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( p ^ k
)  e.  QQ  /\  b  e.  QQ )  ->  ( ( p ^
k )  x.  b
)  e.  QQ )
211206, 209, 210syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( p ^ k
)  x.  b )  e.  QQ )
212 qaddcl 11804 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( P ^
k )  x.  a
)  e.  QQ  /\  ( ( p ^
k )  x.  b
)  e.  QQ )  ->  ( ( ( P ^ k )  x.  a )  +  ( ( p ^
k )  x.  b
) )  e.  QQ )
213203, 211, 212syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( P ^
k )  x.  a
)  +  ( ( p ^ k )  x.  b ) )  e.  QQ )
21411, 13abvcl 18824 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F  e.  A  /\  ( ( ( P ^ k )  x.  a )  +  ( ( p ^ k
)  x.  b ) )  e.  QQ )  ->  ( F `  ( ( ( P ^ k )  x.  a )  +  ( ( p ^ k
)  x.  b ) ) )  e.  RR )
215195, 213, 214syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
( P ^ k
)  x.  a )  +  ( ( p ^ k )  x.  b ) ) )  e.  RR )
21611, 13abvcl 18824 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( F  e.  A  /\  ( ( P ^
k )  x.  a
)  e.  QQ )  ->  ( F `  ( ( P ^
k )  x.  a
) )  e.  RR )
217195, 203, 216syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( ( P ^ k )  x.  a ) )  e.  RR )
21811, 13abvcl 18824 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( F  e.  A  /\  ( ( p ^
k )  x.  b
)  e.  QQ )  ->  ( F `  ( ( p ^
k )  x.  b
) )  e.  RR )
219195, 211, 218syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
p ^ k )  x.  b ) )  e.  RR )
220217, 219readdcld 10069 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  (
( P ^ k
)  x.  a ) )  +  ( F `
 ( ( p ^ k )  x.  b ) ) )  e.  RR )
221 rpexpcl 12879 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( S  e.  RR+  /\  k  e.  ZZ )  ->  ( S ^ k )  e.  RR+ )
222144, 161, 221syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( S ^ k )  e.  RR+ )
223222rpred 11872 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( S ^ k )  e.  RR )
224223adantrr 753 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( S ^ k )  e.  RR )
225 remulcl 10021 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 2  e.  RR  /\  ( S ^ k )  e.  RR )  -> 
( 2  x.  ( S ^ k ) )  e.  RR )
226132, 224, 225sylancr 695 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
2  x.  ( S ^ k ) )  e.  RR )
227 qex 11800 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  QQ  e.  _V
228 cnfldadd 19751 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  +  =  ( +g  ` fld )
22912, 228ressplusg 15993 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( QQ  e.  _V  ->  +  =  ( +g  `  Q
) )
230227, 229ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  +  =  ( +g  `  Q )
23111, 13, 230abvtri 18830 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F  e.  A  /\  ( ( P ^
k )  x.  a
)  e.  QQ  /\  ( ( p ^
k )  x.  b
)  e.  QQ )  ->  ( F `  ( ( ( P ^ k )  x.  a )  +  ( ( p ^ k
)  x.  b ) ) )  <_  (
( F `  (
( P ^ k
)  x.  a ) )  +  ( F `
 ( ( p ^ k )  x.  b ) ) ) )
232195, 203, 211, 231syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
( P ^ k
)  x.  a )  +  ( ( p ^ k )  x.  b ) ) )  <_  ( ( F `
 ( ( P ^ k )  x.  a ) )  +  ( F `  (
( p ^ k
)  x.  b ) ) ) )
233 cnfldmul 19752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  x.  =  ( .r ` fld )
23412, 233ressmulr 16006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( QQ  e.  _V  ->  x.  =  ( .r `  Q ) )
235227, 234ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  x.  =  ( .r `  Q )
23611, 13, 235abvmul 18829 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( F  e.  A  /\  ( P ^ k )  e.  QQ  /\  a  e.  QQ )  ->  ( F `  ( ( P ^ k )  x.  a ) )  =  ( ( F `  ( P ^ k ) )  x.  ( F `
 a ) ) )
237195, 198, 201, 236syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( ( P ^ k )  x.  a ) )  =  ( ( F `  ( P ^ k ) )  x.  ( F `
 a ) ) )
23810ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  P  e.  QQ )
239170ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  k  e.  NN0 )
24012, 11qabvexp 25315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( F  e.  A  /\  P  e.  QQ  /\  k  e.  NN0 )  ->  ( F `  ( P ^ k ) )  =  ( ( F `
 P ) ^
k ) )
241195, 238, 239, 240syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( P ^ k ) )  =  ( ( F `
 P ) ^
k ) )
242241oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  ( P ^ k ) )  x.  ( F `  a ) )  =  ( ( ( F `
 P ) ^
k )  x.  ( F `  a )
) )
243237, 242eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( ( P ^ k )  x.  a ) )  =  ( ( ( F `
 P ) ^
k )  x.  ( F `  a )
) )
244195, 238, 14syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  P )  e.  RR )
245244, 239reexpcld 13025 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  P
) ^ k )  e.  RR )
24611, 13abvcl 18824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( F  e.  A  /\  a  e.  QQ )  ->  ( F `  a
)  e.  RR )
247195, 201, 246syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  a )  e.  RR )
248245, 247remulcld 10070 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  P ) ^ k
)  x.  ( F `
 a ) )  e.  RR )
249 elz 11379 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( a  e.  ZZ  <->  ( a  e.  RR  /\  ( a  =  0  \/  a  e.  NN  \/  -u a  e.  NN ) ) )
250249simprbi 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( a  e.  ZZ  ->  (
a  =  0  \/  a  e.  NN  \/  -u a  e.  NN ) )
251250adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( a  =  0  \/  a  e.  NN  \/  -u a  e.  NN ) )
25211, 17abv0 18831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( F  e.  A  ->  ( F `  0 )  =  0 )
2532, 252syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ph  ->  ( F `  0
)  =  0 )
254 0le1 10551 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  0  <_  1
255253, 254syl6eqbr 4692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ph  ->  ( F `  0
)  <_  1 )
256255adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( F `
 0 )  <_ 
1 )
257 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( a  =  0  ->  ( F `  a )  =  ( F ` 
0 ) )
258257breq1d 4663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( a  =  0  ->  (
( F `  a
)  <_  1  <->  ( F `  0 )  <_ 
1 ) )
259256, 258syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( a  =  0  ->  ( F `  a )  <_  1 ) )
260 ostth3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ph  ->  A. n  e.  NN  -.  1  <  ( F `
 n ) )
261 nnq 11801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( n  e.  NN  ->  n  e.  QQ )
26211, 13abvcl 18824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( ( F  e.  A  /\  n  e.  QQ )  ->  ( F `  n
)  e.  RR )
2632, 261, 262syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  e.  RR )
264 1re 10039 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  1  e.  RR
265 lenlt 10116 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( ( F `  n
)  e.  RR  /\  1  e.  RR )  ->  ( ( F `  n )  <_  1  <->  -.  1  <  ( F `
 n ) ) )
266263, 264, 265sylancl 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( F `  n )  <_  1  <->  -.  1  <  ( F `  n
) ) )
267266ralbidva 2985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ph  ->  ( A. n  e.  NN  ( F `  n )  <_  1  <->  A. n  e.  NN  -.  1  <  ( F `  n ) ) )
268260, 267mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ph  ->  A. n  e.  NN  ( F `  n )  <_  1 )
269 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( n  =  a  ->  ( F `  n )  =  ( F `  a ) )
270269breq1d 4663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( n  =  a  ->  (
( F `  n
)  <_  1  <->  ( F `  a )  <_  1
) )
271270rspccv 3306 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( A. n  e.  NN  ( F `  n )  <_  1  ->  ( a  e.  NN  ->  ( F `  a )  <_  1
) )
272268, 271syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ph  ->  ( a  e.  NN  ->  ( F `  a
)  <_  1 ) )
273272adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( a  e.  NN  ->  ( F `  a )  <_  1 ) )
2742adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  ->  F  e.  A )
275200ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  -> 
a  e.  QQ )
276 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( invg `  Q )  =  ( invg `  Q )
27711, 13, 276abvneg 18834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( F  e.  A  /\  a  e.  QQ )  ->  ( F `  (
( invg `  Q ) `  a
) )  =  ( F `  a ) )
278274, 275, 277syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  -> 
( F `  (
( invg `  Q ) `  a
) )  =  ( F `  a ) )
27912qrngneg 25312 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( a  e.  QQ  ->  (
( invg `  Q ) `  a
)  =  -u a
)
280275, 279syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  -> 
( ( invg `  Q ) `  a
)  =  -u a
)
281 simprr 796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  ->  -u a  e.  NN )
282280, 281eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  -> 
( ( invg `  Q ) `  a
)  e.  NN )
283268adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  ->  A. n  e.  NN  ( F `  n )  <_  1 )
284 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( n  =  ( ( invg `  Q ) `
 a )  -> 
( F `  n
)  =  ( F `
 ( ( invg `  Q ) `
 a ) ) )
285284breq1d 4663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( n  =  ( ( invg `  Q ) `
 a )  -> 
( ( F `  n )  <_  1  <->  ( F `  ( ( invg `  Q
) `  a )
)  <_  1 ) )
286285rspcv 3305 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( ( invg `  Q ) `  a
)  e.  NN  ->  ( A. n  e.  NN  ( F `  n )  <_  1  ->  ( F `  ( ( invg `  Q ) `
 a ) )  <_  1 ) )
287282, 283, 286sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  -> 
( F `  (
( invg `  Q ) `  a
) )  <_  1
)
288278, 287eqbrtrrd 4677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( (
ph  /\  ( a  e.  ZZ  /\  -u a  e.  NN ) )  -> 
( F `  a
)  <_  1 )
289288expr 643 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( -u a  e.  NN  ->  ( F `  a )  <_  1 ) )
290259, 273, 2893jaod 1392 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( ( a  =  0  \/  a  e.  NN  \/  -u a  e.  NN )  ->  ( F `  a )  <_  1
) )
291251, 290mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( F `
 a )  <_ 
1 )
292291ralrimiva 2966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ph  ->  A. a  e.  ZZ  ( F `  a )  <_  1 )
293292ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  A. a  e.  ZZ  ( F `  a )  <_  1
)
294 rsp 2929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( A. a  e.  ZZ  ( F `  a )  <_  1  ->  ( a  e.  ZZ  ->  ( F `  a )  <_  1
) )
295293, 199, 294sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  a )  <_  1 )
296264a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  1  e.  RR )
297161ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  k  e.  ZZ )
29819ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  0  <  ( F `  P
) )
299 expgt0 12893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( F `  P
)  e.  RR  /\  k  e.  ZZ  /\  0  <  ( F `  P
) )  ->  0  <  ( ( F `  P ) ^ k
) )
300244, 297, 298, 299syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  0  <  ( ( F `  P ) ^ k
) )
301 lemul2 10876 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( F `  a
)  e.  RR  /\  1  e.  RR  /\  (
( ( F `  P ) ^ k
)  e.  RR  /\  0  <  ( ( F `
 P ) ^
k ) ) )  ->  ( ( F `
 a )  <_ 
1  <->  ( ( ( F `  P ) ^ k )  x.  ( F `  a
) )  <_  (
( ( F `  P ) ^ k
)  x.  1 ) ) )
302247, 296, 245, 300, 301syl112anc 1330 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  a
)  <_  1  <->  ( (
( F `  P
) ^ k )  x.  ( F `  a ) )  <_ 
( ( ( F `
 P ) ^
k )  x.  1 ) ) )
303295, 302mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  P ) ^ k
)  x.  ( F `
 a ) )  <_  ( ( ( F `  P ) ^ k )  x.  1 ) )
304245recnd 10068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  P
) ^ k )  e.  CC )
305304mulid1d 10057 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  P ) ^ k
)  x.  1 )  =  ( ( F `
 P ) ^
k ) )
306303, 305breqtrd 4679 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  P ) ^ k
)  x.  ( F `
 a ) )  <_  ( ( F `
 P ) ^
k ) )
307144rpred 11872 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  S  e.  RR )
308307adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  S  e.  RR )
309142adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  P )  e.  RR+ )
310309rpge0d 11876 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  0  <_  ( F `  P
) )
311174adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  p  e.  NN )
312311, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  p  e.  QQ )
313195, 312, 136syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  p )  e.  RR )
314 max1 12016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( F `  P
)  e.  RR  /\  ( F `  p )  e.  RR )  -> 
( F `  P
)  <_  if (
( F `  P
)  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) ) )
315244, 313, 314syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  P )  <_  if ( ( F `
 P )  <_ 
( F `  p
) ,  ( F `
 p ) ,  ( F `  P
) ) )
316315, 134syl6breqr 4695 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  P )  <_  S )
317 leexp1a 12919 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( F `  P )  e.  RR  /\  S  e.  RR  /\  k  e.  NN0 )  /\  ( 0  <_  ( F `  P )  /\  ( F `  P
)  <_  S )
)  ->  ( ( F `  P ) ^ k )  <_ 
( S ^ k
) )
318244, 308, 239, 310, 316, 317syl32anc 1334 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  P
) ^ k )  <_  ( S ^
k ) )
319248, 245, 224, 306, 318letrd 10194 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  P ) ^ k
)  x.  ( F `
 a ) )  <_  ( S ^
k ) )
320243, 319eqbrtrd 4675 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( ( P ^ k )  x.  a ) )  <_ 
( S ^ k
) )
32111, 13, 235abvmul 18829 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( F  e.  A  /\  ( p ^ k
)  e.  QQ  /\  b  e.  QQ )  ->  ( F `  (
( p ^ k
)  x.  b ) )  =  ( ( F `  ( p ^ k ) )  x.  ( F `  b ) ) )
322195, 206, 209, 321syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
p ^ k )  x.  b ) )  =  ( ( F `
 ( p ^
k ) )  x.  ( F `  b
) ) )
32312, 11qabvexp 25315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( F  e.  A  /\  p  e.  QQ  /\  k  e.  NN0 )  ->  ( F `  ( p ^ k ) )  =  ( ( F `
 p ) ^
k ) )
324195, 312, 239, 323syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( p ^ k ) )  =  ( ( F `
 p ) ^
k ) )
325324oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  (
p ^ k ) )  x.  ( F `
 b ) )  =  ( ( ( F `  p ) ^ k )  x.  ( F `  b
) ) )
326322, 325eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
p ^ k )  x.  b ) )  =  ( ( ( F `  p ) ^ k )  x.  ( F `  b
) ) )
327313, 239reexpcld 13025 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  p
) ^ k )  e.  RR )
32811, 13abvcl 18824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( F  e.  A  /\  b  e.  QQ )  ->  ( F `  b
)  e.  RR )
329195, 209, 328syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  b )  e.  RR )
330327, 329remulcld 10070 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  p ) ^ k
)  x.  ( F `
 b ) )  e.  RR )
331 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( a  =  b  ->  ( F `  a )  =  ( F `  b ) )
332331breq1d 4663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( a  =  b  ->  (
( F `  a
)  <_  1  <->  ( F `  b )  <_  1
) )
333332rspcv 3305 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( b  e.  ZZ  ->  ( A. a  e.  ZZ  ( F `  a )  <_  1  ->  ( F `  b )  <_  1 ) )
334207, 293, 333sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  b )  <_  1 )
335311nnne0d 11065 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  p  =/=  0 )
336195, 312, 335, 138syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  0  <  ( F `  p
) )
337 expgt0 12893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( F `  p
)  e.  RR  /\  k  e.  ZZ  /\  0  <  ( F `  p
) )  ->  0  <  ( ( F `  p ) ^ k
) )
338313, 297, 336, 337syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  0  <  ( ( F `  p ) ^ k
) )
339 lemul2 10876 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( F `  b
)  e.  RR  /\  1  e.  RR  /\  (
( ( F `  p ) ^ k
)  e.  RR  /\  0  <  ( ( F `
 p ) ^
k ) ) )  ->  ( ( F `
 b )  <_ 
1  <->  ( ( ( F `  p ) ^ k )  x.  ( F `  b
) )  <_  (
( ( F `  p ) ^ k
)  x.  1 ) ) )
340329, 296, 327, 338, 339syl112anc 1330 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  b
)  <_  1  <->  ( (
( F `  p
) ^ k )  x.  ( F `  b ) )  <_ 
( ( ( F `
 p ) ^
k )  x.  1 ) ) )
341334, 340mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  p ) ^ k
)  x.  ( F `
 b ) )  <_  ( ( ( F `  p ) ^ k )  x.  1 ) )
342327recnd 10068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  p
) ^ k )  e.  CC )
343342mulid1d 10057 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  p ) ^ k
)  x.  1 )  =  ( ( F `
 p ) ^
k ) )
344341, 343breqtrd 4679 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  p ) ^ k
)  x.  ( F `
 b ) )  <_  ( ( F `
 p ) ^
k ) )
345141adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  p )  e.  RR+ )
346345rpge0d 11876 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  0  <_  ( F `  p
) )
347 max2 12018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( F `  P
)  e.  RR  /\  ( F `  p )  e.  RR )  -> 
( F `  p
)  <_  if (
( F `  P
)  <_  ( F `  p ) ,  ( F `  p ) ,  ( F `  P ) ) )
348244, 313, 347syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  p )  <_  if ( ( F `
 P )  <_ 
( F `  p
) ,  ( F `
 p ) ,  ( F `  P
) ) )
349348, 134syl6breqr 4695 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  p )  <_  S )
350 leexp1a 12919 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( F `  p )  e.  RR  /\  S  e.  RR  /\  k  e.  NN0 )  /\  ( 0  <_  ( F `  p )  /\  ( F `  p
)  <_  S )
)  ->  ( ( F `  p ) ^ k )  <_ 
( S ^ k
) )
351313, 308, 239, 346, 349, 350syl32anc 1334 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  p
) ^ k )  <_  ( S ^
k ) )
352330, 327, 224, 344, 351letrd 10194 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( F `  p ) ^ k
)  x.  ( F `
 b ) )  <_  ( S ^
k ) )
353326, 352eqbrtrd 4675 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
p ^ k )  x.  b ) )  <_  ( S ^
k ) )
354217, 219, 224, 224, 320, 353le2addd 10646 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  (
( P ^ k
)  x.  a ) )  +  ( F `
 ( ( p ^ k )  x.  b ) ) )  <_  ( ( S ^ k )  +  ( S ^ k
) ) )
355222rpcnd 11874 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( S ^ k )  e.  CC )
3563552timesd 11275 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
2  x.  ( S ^ k ) )  =  ( ( S ^ k )  +  ( S ^ k
) ) )
357356adantrr 753 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
2  x.  ( S ^ k ) )  =  ( ( S ^ k )  +  ( S ^ k
) ) )
358354, 357breqtrrd 4681 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( F `  (
( P ^ k
)  x.  a ) )  +  ( F `
 ( ( p ^ k )  x.  b ) ) )  <_  ( 2  x.  ( S ^ k
) ) )
359215, 220, 226, 232, 358letrd 10194 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  ( F `  ( (
( P ^ k
)  x.  a )  +  ( ( p ^ k )  x.  b ) ) )  <_  ( 2  x.  ( S ^ k
) ) )
360 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 1  =  ( ( ( P ^ k )  x.  a )  +  ( ( p ^
k )  x.  b
) )  ->  ( F `  1 )  =  ( F `  ( ( ( P ^ k )  x.  a )  +  ( ( p ^ k
)  x.  b ) ) ) )
361360breq1d 4663 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1  =  ( ( ( P ^ k )  x.  a )  +  ( ( p ^
k )  x.  b
) )  ->  (
( F `  1
)  <_  ( 2  x.  ( S ^
k ) )  <->  ( F `  ( ( ( P ^ k )  x.  a )  +  ( ( p ^ k
)  x.  b ) ) )  <_  (
2  x.  ( S ^ k ) ) ) )
362359, 361syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
1  =  ( ( ( P ^ k
)  x.  a )  +  ( ( p ^ k )  x.  b ) )  -> 
( F `  1
)  <_  ( 2  x.  ( S ^
k ) ) ) )
363194, 362sylbid 230 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  ( k  e.  NN  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
) )  ->  (
( ( P ^
k )  gcd  (
p ^ k ) )  =  ( ( ( P ^ k
)  x.  a )  +  ( ( p ^ k )  x.  b ) )  -> 
( F `  1
)  <_  ( 2  x.  ( S ^
k ) ) ) )
364363anassrs 680 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  /\  (
a  e.  ZZ  /\  b  e.  ZZ )
)  ->  ( (
( P ^ k
)  gcd  ( p ^ k ) )  =  ( ( ( P ^ k )  x.  a )  +  ( ( p ^
k )  x.  b
) )  ->  ( F `  1 )  <_  ( 2  x.  ( S ^ k ) ) ) )
365364rexlimdvva 3038 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( P ^ k
)  gcd  ( p ^ k ) )  =  ( ( ( P ^ k )  x.  a )  +  ( ( p ^
k )  x.  b
) )  ->  ( F `  1 )  <_  ( 2  x.  ( S ^ k ) ) ) )
366179, 365mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  ( F `  1 )  <_  ( 2  x.  ( S ^ k ) ) )
367168, 366eqbrtrrd 4677 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  1  <_  ( 2  x.  ( S ^ k ) ) )
368222rpregt0d 11878 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( S ^ k
)  e.  RR  /\  0  <  ( S ^
k ) ) )
369 ledivmul2 10902 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  RR  /\  2  e.  RR  /\  (
( S ^ k
)  e.  RR  /\  0  <  ( S ^
k ) ) )  ->  ( ( 1  /  ( S ^
k ) )  <_ 
2  <->  1  <_  (
2  x.  ( S ^ k ) ) ) )
370264, 132, 369mp3an12 1414 . . . . . . . . . . . . . . . . 17  |-  ( ( ( S ^ k
)  e.  RR  /\  0  <  ( S ^
k ) )  -> 
( ( 1  / 
( S ^ k
) )  <_  2  <->  1  <_  ( 2  x.  ( S ^ k
) ) ) )
371368, 370syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( 1  /  ( S ^ k ) )  <_  2  <->  1  <_  ( 2  x.  ( S ^ k ) ) ) )
372367, 371mpbird 247 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
1  /  ( S ^ k ) )  <_  2 )
373163, 372eqbrtrd 4675 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( 1  /  S
) ^ k )  <_  2 )
374 reexpcl 12877 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1  /  S
)  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  /  S ) ^ k
)  e.  RR )
375145, 170, 374syl2an 494 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( 1  /  S
) ^ k )  e.  RR )
376 lenlt 10116 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 1  /  S ) ^ k
)  e.  RR  /\  2  e.  RR )  ->  ( ( ( 1  /  S ) ^
k )  <_  2  <->  -.  2  <  ( ( 1  /  S ) ^ k ) ) )
377375, 132, 376sylancl 694 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
( ( 1  /  S ) ^ k
)  <_  2  <->  -.  2  <  ( ( 1  /  S ) ^ k
) ) )
378373, 377mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  -.  2  <  ( ( 1  /  S ) ^
k ) )
379378pm2.21d 118 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p
)  <  1 ) )  /\  k  e.  NN )  ->  (
2  <  ( (
1  /  S ) ^ k )  ->  -.  ( F `  p
)  <  1 ) )
380379rexlimdva 3031 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  -> 
( E. k  e.  NN  2  <  (
( 1  /  S
) ^ k )  ->  -.  ( F `  p )  <  1
) )
381156, 380mpd 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  Prime )  /\  ( P  =/=  p  /\  ( F `  p )  <  1 ) )  ->  -.  ( F `  p
)  <  1 )
382381expr 643 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( F `  p
)  <  1  ->  -.  ( F `  p
)  <  1 ) )
383382pm2.01d 181 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  -.  ( F `  p )  <  1 )
384260ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  A. n  e.  NN  -.  1  < 
( F `  n
) )
385 fveq2 6191 . . . . . . . . . . . 12  |-  ( n  =  p  ->  ( F `  n )  =  ( F `  p ) )
386385breq2d 4665 . . . . . . . . . . 11  |-  ( n  =  p  ->  (
1  <  ( F `  n )  <->  1  <  ( F `  p ) ) )
387386notbid 308 . . . . . . . . . 10  |-  ( n  =  p  ->  ( -.  1  <  ( F `
 n )  <->  -.  1  <  ( F `  p
) ) )
388387rspcv 3305 . . . . . . . . 9  |-  ( p  e.  NN  ->  ( A. n  e.  NN  -.  1  <  ( F `
 n )  ->  -.  1  <  ( F `
 p ) ) )
389100, 384, 388sylc 65 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  -.  1  <  ( F `  p ) )
390 lttri3 10121 . . . . . . . . 9  |-  ( ( ( F `  p
)  e.  RR  /\  1  e.  RR )  ->  ( ( F `  p )  =  1  <-> 
( -.  ( F `
 p )  <  1  /\  -.  1  <  ( F `  p
) ) ) )
391137, 264, 390sylancl 694 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( F `  p
)  =  1  <->  ( -.  ( F `  p
)  <  1  /\  -.  1  <  ( F `
 p ) ) ) )
392383, 389, 391mpbir2and 957 . . . . . . 7  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( F `  p )  =  1 )
393109, 131, 3923eqtr4d 2666 . . . . . 6  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  (
( ( J `  P ) `  p
)  ^c  R )  =  ( F `
 p ) )
394107, 393eqtr2d 2657 . . . . 5  |-  ( ( ( ph  /\  p  e.  Prime )  /\  P  =/=  p )  ->  ( F `  p )  =  ( ( y  e.  QQ  |->  ( ( ( J `  P
) `  y )  ^c  R )
) `  p )
)
395394ex 450 . . . 4  |-  ( (
ph  /\  p  e.  Prime )  ->  ( P  =/=  p  ->  ( F `  p )  =  ( ( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p ) ) )
39698, 395pm2.61dne 2880 . . 3  |-  ( (
ph  /\  p  e.  Prime )  ->  ( F `  p )  =  ( ( y  e.  QQ  |->  ( ( ( J `
 P ) `  y )  ^c  R ) ) `  p ) )
39712, 11, 2, 47, 396ostthlem2 25317 . 2  |-  ( ph  ->  F  =  ( y  e.  QQ  |->  ( ( ( J `  P
) `  y )  ^c  R )
) )
398 oveq2 6658 . . . . 5  |-  ( a  =  R  ->  (
( ( J `  P ) `  y
)  ^c  a )  =  ( ( ( J `  P
) `  y )  ^c  R )
)
399398mpteq2dv 4745 . . . 4  |-  ( a  =  R  ->  (
y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^c  a ) )  =  ( y  e.  QQ  |->  ( ( ( J `  P ) `  y
)  ^c  R ) ) )
400399eqeq2d 2632 . . 3  |-  ( a  =  R  ->  ( F  =  ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  a ) )  <-> 
F  =  ( y  e.  QQ  |->  ( ( ( J `  P
) `  y )  ^c  R )
) ) )
401400rspcev 3309 . 2  |-  ( ( R  e.  RR+  /\  F  =  ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  R ) ) )  ->  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  a ) ) )
40244, 397, 401syl2anc 693 1  |-  ( ph  ->  E. a  e.  RR+  F  =  ( y  e.  QQ  |->  ( ( ( J `  P ) `
 y )  ^c  a ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   QQcq 11788   RR+crp 11832   ^cexp 12860   expce 14792    || cdvds 14983    gcd cgcd 15216   Primecprime 15385    pCnt cpc 15541   ↾s cress 15858   +g cplusg 15941   .rcmulr 15942   invgcminusg 17423  AbsValcabv 18816  ℂfldccnfld 19746   logclog 24301    ^c ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591  df-cntz 17750  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-subrg 18778  df-abv 18817  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  ostth  25328
  Copyright terms: Public domain W3C validator