MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvres Structured version   Visualization version   Unicode version

Theorem abvres 18839
Description: The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
abvres.a  |-  A  =  (AbsVal `  R )
abvres.s  |-  S  =  ( Rs  C )
abvres.b  |-  B  =  (AbsVal `  S )
Assertion
Ref Expression
abvres  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( F  |`  C )  e.  B )

Proof of Theorem abvres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvres.b . . 3  |-  B  =  (AbsVal `  S )
21a1i 11 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  B  =  (AbsVal `  S )
)
3 abvres.s . . . 4  |-  S  =  ( Rs  C )
43subrgbas 18789 . . 3  |-  ( C  e.  (SubRing `  R
)  ->  C  =  ( Base `  S )
)
54adantl 482 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  C  =  ( Base `  S
) )
6 eqid 2622 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
73, 6ressplusg 15993 . . 3  |-  ( C  e.  (SubRing `  R
)  ->  ( +g  `  R )  =  ( +g  `  S ) )
87adantl 482 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( +g  `  R )  =  ( +g  `  S
) )
9 eqid 2622 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
103, 9ressmulr 16006 . . 3  |-  ( C  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
1110adantl 482 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( .r `  R )  =  ( .r `  S
) )
12 subrgsubg 18786 . . . 4  |-  ( C  e.  (SubRing `  R
)  ->  C  e.  (SubGrp `  R ) )
1312adantl 482 . . 3  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  C  e.  (SubGrp `  R )
)
14 eqid 2622 . . . 4  |-  ( 0g
`  R )  =  ( 0g `  R
)
153, 14subg0 17600 . . 3  |-  ( C  e.  (SubGrp `  R
)  ->  ( 0g `  R )  =  ( 0g `  S ) )
1613, 15syl 17 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( 0g `  R )  =  ( 0g `  S
) )
173subrgring 18783 . . 3  |-  ( C  e.  (SubRing `  R
)  ->  S  e.  Ring )
1817adantl 482 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  S  e.  Ring )
19 abvres.a . . . 4  |-  A  =  (AbsVal `  R )
20 eqid 2622 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
2119, 20abvf 18823 . . 3  |-  ( F  e.  A  ->  F : ( Base `  R
) --> RR )
2220subrgss 18781 . . 3  |-  ( C  e.  (SubRing `  R
)  ->  C  C_  ( Base `  R ) )
23 fssres 6070 . . 3  |-  ( ( F : ( Base `  R ) --> RR  /\  C  C_  ( Base `  R
) )  ->  ( F  |`  C ) : C --> RR )
2421, 22, 23syl2an 494 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( F  |`  C ) : C --> RR )
2514subg0cl 17602 . . . 4  |-  ( C  e.  (SubGrp `  R
)  ->  ( 0g `  R )  e.  C
)
26 fvres 6207 . . . 4  |-  ( ( 0g `  R )  e.  C  ->  (
( F  |`  C ) `
 ( 0g `  R ) )  =  ( F `  ( 0g `  R ) ) )
2713, 25, 263syl 18 . . 3  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  (
( F  |`  C ) `
 ( 0g `  R ) )  =  ( F `  ( 0g `  R ) ) )
2819, 14abv0 18831 . . . 4  |-  ( F  e.  A  ->  ( F `  ( 0g `  R ) )  =  0 )
2928adantr 481 . . 3  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( F `  ( 0g `  R ) )  =  0 )
3027, 29eqtrd 2656 . 2  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  (
( F  |`  C ) `
 ( 0g `  R ) )  =  0 )
31 simp1l 1085 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C  /\  x  =/=  ( 0g `  R ) )  ->  F  e.  A )
3222adantl 482 . . . . . 6  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  C  C_  ( Base `  R
) )
3332sselda 3603 . . . . 5  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C )  ->  x  e.  ( Base `  R ) )
34333adant3 1081 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C  /\  x  =/=  ( 0g `  R ) )  ->  x  e.  ( Base `  R ) )
35 simp3 1063 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C  /\  x  =/=  ( 0g `  R ) )  ->  x  =/=  ( 0g `  R ) )
3619, 20, 14abvgt0 18828 . . . 4  |-  ( ( F  e.  A  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R
) )  ->  0  <  ( F `  x
) )
3731, 34, 35, 36syl3anc 1326 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C  /\  x  =/=  ( 0g `  R ) )  -> 
0  <  ( F `  x ) )
38 fvres 6207 . . . 4  |-  ( x  e.  C  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
39383ad2ant2 1083 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C  /\  x  =/=  ( 0g `  R ) )  -> 
( ( F  |`  C ) `  x
)  =  ( F `
 x ) )
4037, 39breqtrrd 4681 . 2  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  x  e.  C  /\  x  =/=  ( 0g `  R ) )  -> 
0  <  ( ( F  |`  C ) `  x ) )
41 simp1l 1085 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  ->  F  e.  A )
42 simp1r 1086 . . . . . 6  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  ->  C  e.  (SubRing `  R
) )
4342, 22syl 17 . . . . 5  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  ->  C  C_  ( Base `  R
) )
44 simp2l 1087 . . . . 5  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  ->  x  e.  C )
4543, 44sseldd 3604 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  ->  x  e.  ( Base `  R ) )
46 simp3l 1089 . . . . 5  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
y  e.  C )
4743, 46sseldd 3604 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
y  e.  ( Base `  R ) )
4819, 20, 9abvmul 18829 . . . 4  |-  ( ( F  e.  A  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  ->  ( F `  ( x
( .r `  R
) y ) )  =  ( ( F `
 x )  x.  ( F `  y
) ) )
4941, 45, 47, 48syl3anc 1326 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( F `  (
x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y ) ) )
509subrgmcl 18792 . . . . 5  |-  ( ( C  e.  (SubRing `  R
)  /\  x  e.  C  /\  y  e.  C
)  ->  ( x
( .r `  R
) y )  e.  C )
5142, 44, 46, 50syl3anc 1326 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( x ( .r
`  R ) y )  e.  C )
52 fvres 6207 . . . 4  |-  ( ( x ( .r `  R ) y )  e.  C  ->  (
( F  |`  C ) `
 ( x ( .r `  R ) y ) )  =  ( F `  (
x ( .r `  R ) y ) ) )
5351, 52syl 17 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( F  |`  C ) `  (
x ( .r `  R ) y ) )  =  ( F `
 ( x ( .r `  R ) y ) ) )
5444, 38syl 17 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( F  |`  C ) `  x
)  =  ( F `
 x ) )
55 fvres 6207 . . . . 5  |-  ( y  e.  C  ->  (
( F  |`  C ) `
 y )  =  ( F `  y
) )
5646, 55syl 17 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( F  |`  C ) `  y
)  =  ( F `
 y ) )
5754, 56oveq12d 6668 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( ( F  |`  C ) `  x
)  x.  ( ( F  |`  C ) `  y ) )  =  ( ( F `  x )  x.  ( F `  y )
) )
5849, 53, 573eqtr4d 2666 . 2  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( F  |`  C ) `  (
x ( .r `  R ) y ) )  =  ( ( ( F  |`  C ) `
 x )  x.  ( ( F  |`  C ) `  y
) ) )
5919, 20, 6abvtri 18830 . . . 4  |-  ( ( F  e.  A  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  ->  ( F `  ( x
( +g  `  R ) y ) )  <_ 
( ( F `  x )  +  ( F `  y ) ) )
6041, 45, 47, 59syl3anc 1326 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( F `  (
x ( +g  `  R
) y ) )  <_  ( ( F `
 x )  +  ( F `  y
) ) )
616subrgacl 18791 . . . . 5  |-  ( ( C  e.  (SubRing `  R
)  /\  x  e.  C  /\  y  e.  C
)  ->  ( x
( +g  `  R ) y )  e.  C
)
6242, 44, 46, 61syl3anc 1326 . . . 4  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( x ( +g  `  R ) y )  e.  C )
63 fvres 6207 . . . 4  |-  ( ( x ( +g  `  R
) y )  e.  C  ->  ( ( F  |`  C ) `  ( x ( +g  `  R ) y ) )  =  ( F `
 ( x ( +g  `  R ) y ) ) )
6462, 63syl 17 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( F  |`  C ) `  (
x ( +g  `  R
) y ) )  =  ( F `  ( x ( +g  `  R ) y ) ) )
6554, 56oveq12d 6668 . . 3  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( ( F  |`  C ) `  x
)  +  ( ( F  |`  C ) `  y ) )  =  ( ( F `  x )  +  ( F `  y ) ) )
6660, 64, 653brtr4d 4685 . 2  |-  ( ( ( F  e.  A  /\  C  e.  (SubRing `  R ) )  /\  ( x  e.  C  /\  x  =/=  ( 0g `  R ) )  /\  ( y  e.  C  /\  y  =/=  ( 0g `  R
) ) )  -> 
( ( F  |`  C ) `  (
x ( +g  `  R
) y ) )  <_  ( ( ( F  |`  C ) `  x )  +  ( ( F  |`  C ) `
 y ) ) )
672, 5, 8, 11, 16, 18, 24, 30, 40, 58, 66isabvd 18820 1  |-  ( ( F  e.  A  /\  C  e.  (SubRing `  R
) )  ->  ( F  |`  C )  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   class class class wbr 4653    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   .rcmulr 15942   0gc0g 16100  SubGrpcsubg 17588   Ringcrg 18547  SubRingcsubrg 18776  AbsValcabv 18816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ico 12181  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-mgp 18490  df-ring 18549  df-subrg 18778  df-abv 18817
This theorem is referenced by:  subrgnrg  22477  qabsabv  25318
  Copyright terms: Public domain W3C validator