MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem12 Structured version   Visualization version   Unicode version

Theorem axlowdimlem12 25833
Description: Lemma for axlowdim 25841. Calculate the value of  Q away from its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem10.1  |-  Q  =  ( { <. (
I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) )
Assertion
Ref Expression
axlowdimlem12  |-  ( ( K  e.  ( 1 ... N )  /\  K  =/=  ( I  + 
1 ) )  -> 
( Q `  K
)  =  0 )

Proof of Theorem axlowdimlem12
StepHypRef Expression
1 axlowdimlem10.1 . . 3  |-  Q  =  ( { <. (
I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) )
21fveq1i 6192 . 2  |-  ( Q `
 K )  =  ( ( { <. ( I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) ) `  K
)
3 eldifsn 4317 . . 3  |-  ( K  e.  ( ( 1 ... N )  \  { ( I  + 
1 ) } )  <-> 
( K  e.  ( 1 ... N )  /\  K  =/=  (
I  +  1 ) ) )
4 disjdif 4040 . . . . 5  |-  ( { ( I  +  1 ) }  i^i  (
( 1 ... N
)  \  { (
I  +  1 ) } ) )  =  (/)
5 ovex 6678 . . . . . . 7  |-  ( I  +  1 )  e. 
_V
6 1ex 10035 . . . . . . 7  |-  1  e.  _V
75, 6fnsn 5946 . . . . . 6  |-  { <. ( I  +  1 ) ,  1 >. }  Fn  { ( I  +  1 ) }
8 c0ex 10034 . . . . . . . 8  |-  0  e.  _V
98fconst 6091 . . . . . . 7  |-  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) : ( ( 1 ... N )  \  {
( I  +  1 ) } ) --> { 0 }
10 ffn 6045 . . . . . . 7  |-  ( ( ( ( 1 ... N )  \  {
( I  +  1 ) } )  X. 
{ 0 } ) : ( ( 1 ... N )  \  { ( I  + 
1 ) } ) --> { 0 }  ->  ( ( ( 1 ... N )  \  {
( I  +  1 ) } )  X. 
{ 0 } )  Fn  ( ( 1 ... N )  \  { ( I  + 
1 ) } ) )
119, 10ax-mp 5 . . . . . 6  |-  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } )  Fn  ( ( 1 ... N )  \  {
( I  +  1 ) } )
12 fvun2 6270 . . . . . 6  |-  ( ( { <. ( I  + 
1 ) ,  1
>. }  Fn  { ( I  +  1 ) }  /\  ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } )  Fn  ( ( 1 ... N )  \  {
( I  +  1 ) } )  /\  ( ( { ( I  +  1 ) }  i^i  ( ( 1 ... N ) 
\  { ( I  +  1 ) } ) )  =  (/)  /\  K  e.  ( ( 1 ... N ) 
\  { ( I  +  1 ) } ) ) )  -> 
( ( { <. ( I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) ) `  K
)  =  ( ( ( ( 1 ... N )  \  {
( I  +  1 ) } )  X. 
{ 0 } ) `
 K ) )
137, 11, 12mp3an12 1414 . . . . 5  |-  ( ( ( { ( I  +  1 ) }  i^i  ( ( 1 ... N )  \  { ( I  + 
1 ) } ) )  =  (/)  /\  K  e.  ( ( 1 ... N )  \  {
( I  +  1 ) } ) )  ->  ( ( {
<. ( I  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) ) `
 K )  =  ( ( ( ( 1 ... N ) 
\  { ( I  +  1 ) } )  X.  { 0 } ) `  K
) )
144, 13mpan 706 . . . 4  |-  ( K  e.  ( ( 1 ... N )  \  { ( I  + 
1 ) } )  ->  ( ( {
<. ( I  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) ) `
 K )  =  ( ( ( ( 1 ... N ) 
\  { ( I  +  1 ) } )  X.  { 0 } ) `  K
) )
158fvconst2 6469 . . . 4  |-  ( K  e.  ( ( 1 ... N )  \  { ( I  + 
1 ) } )  ->  ( ( ( ( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) `  K )  =  0 )
1614, 15eqtrd 2656 . . 3  |-  ( K  e.  ( ( 1 ... N )  \  { ( I  + 
1 ) } )  ->  ( ( {
<. ( I  +  1 ) ,  1 >. }  u.  ( (
( 1 ... N
)  \  { (
I  +  1 ) } )  X.  {
0 } ) ) `
 K )  =  0 )
173, 16sylbir 225 . 2  |-  ( ( K  e.  ( 1 ... N )  /\  K  =/=  ( I  + 
1 ) )  -> 
( ( { <. ( I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) ) `  K
)  =  0 )
182, 17syl5eq 2668 1  |-  ( ( K  e.  ( 1 ... N )  /\  K  =/=  ( I  + 
1 ) )  -> 
( Q `  K
)  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   <.cop 4183    X. cxp 5112    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653
This theorem is referenced by:  axlowdimlem14  25835  axlowdimlem16  25837  axlowdimlem17  25838
  Copyright terms: Public domain W3C validator