MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem14 Structured version   Visualization version   Unicode version

Theorem axlowdimlem14 25835
Description: Lemma for axlowdim 25841. Take two possible  Q from axlowdimlem10 25831. They are the same iff their distinguished values are the same. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypotheses
Ref Expression
axlowdimlem14.1  |-  Q  =  ( { <. (
I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) )
axlowdimlem14.2  |-  R  =  ( { <. ( J  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( J  + 
1 ) } )  X.  { 0 } ) )
Assertion
Ref Expression
axlowdimlem14  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) )  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( Q  =  R  ->  I  =  J ) )

Proof of Theorem axlowdimlem14
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 axlowdimlem14.1 . . . . . . 7  |-  Q  =  ( { <. (
I  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( I  + 
1 ) } )  X.  { 0 } ) )
21axlowdimlem10 25831 . . . . . 6  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  Q  e.  ( EE `  N ) )
3 elee 25774 . . . . . . 7  |-  ( N  e.  NN  ->  ( Q  e.  ( EE `  N )  <->  Q :
( 1 ... N
) --> RR ) )
43adantr 481 . . . . . 6  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( Q  e.  ( EE `  N
)  <->  Q : ( 1 ... N ) --> RR ) )
52, 4mpbid 222 . . . . 5  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  Q : ( 1 ... N ) --> RR )
6 ffn 6045 . . . . 5  |-  ( Q : ( 1 ... N ) --> RR  ->  Q  Fn  ( 1 ... N ) )
75, 6syl 17 . . . 4  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  Q  Fn  (
1 ... N ) )
8 axlowdimlem14.2 . . . . . . 7  |-  R  =  ( { <. ( J  +  1 ) ,  1 >. }  u.  ( ( ( 1 ... N )  \  { ( J  + 
1 ) } )  X.  { 0 } ) )
98axlowdimlem10 25831 . . . . . 6  |-  ( ( N  e.  NN  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  ->  R  e.  ( EE `  N ) )
10 elee 25774 . . . . . . 7  |-  ( N  e.  NN  ->  ( R  e.  ( EE `  N )  <->  R :
( 1 ... N
) --> RR ) )
1110adantr 481 . . . . . 6  |-  ( ( N  e.  NN  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( R  e.  ( EE `  N
)  <->  R : ( 1 ... N ) --> RR ) )
129, 11mpbid 222 . . . . 5  |-  ( ( N  e.  NN  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  ->  R : ( 1 ... N ) --> RR )
13 ffn 6045 . . . . 5  |-  ( R : ( 1 ... N ) --> RR  ->  R  Fn  ( 1 ... N ) )
1412, 13syl 17 . . . 4  |-  ( ( N  e.  NN  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  ->  R  Fn  (
1 ... N ) )
15 eqfnfv 6311 . . . 4  |-  ( ( Q  Fn  ( 1 ... N )  /\  R  Fn  ( 1 ... N ) )  ->  ( Q  =  R  <->  A. i  e.  ( 1 ... N ) ( Q `  i
)  =  ( R `
 i ) ) )
167, 14, 15syl2an 494 . . 3  |-  ( ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  /\  ( N  e.  NN  /\  J  e.  ( 1 ... ( N  -  1 ) ) ) )  -> 
( Q  =  R  <->  A. i  e.  (
1 ... N ) ( Q `  i )  =  ( R `  i ) ) )
17163impdi 1381 . 2  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) )  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( Q  =  R  <->  A. i  e.  ( 1 ... N ) ( Q `  i
)  =  ( R `
 i ) ) )
18 fznatpl1 12395 . . . . . . . 8  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  + 
1 )  e.  ( 1 ... N ) )
19183adant3 1081 . . . . . . 7  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) )  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  + 
1 )  e.  ( 1 ... N ) )
2019adantr 481 . . . . . 6  |-  ( ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) )  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  /\  I  =/=  J
)  ->  ( I  +  1 )  e.  ( 1 ... N
) )
21 ax-1ne0 10005 . . . . . . . 8  |-  1  =/=  0
2221a1i 11 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) )  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  /\  I  =/=  J
)  ->  1  =/=  0 )
231axlowdimlem11 25832 . . . . . . . 8  |-  ( Q `
 ( I  + 
1 ) )  =  1
2423a1i 11 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) )  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  /\  I  =/=  J
)  ->  ( Q `  ( I  +  1 ) )  =  1 )
25 elfzelz 12342 . . . . . . . . . . . . 13  |-  ( I  e.  ( 1 ... ( N  -  1 ) )  ->  I  e.  ZZ )
2625zcnd 11483 . . . . . . . . . . . 12  |-  ( I  e.  ( 1 ... ( N  -  1 ) )  ->  I  e.  CC )
27 elfzelz 12342 . . . . . . . . . . . . 13  |-  ( J  e.  ( 1 ... ( N  -  1 ) )  ->  J  e.  ZZ )
2827zcnd 11483 . . . . . . . . . . . 12  |-  ( J  e.  ( 1 ... ( N  -  1 ) )  ->  J  e.  CC )
29 ax-1cn 9994 . . . . . . . . . . . . 13  |-  1  e.  CC
30 addcan2 10221 . . . . . . . . . . . . 13  |-  ( ( I  e.  CC  /\  J  e.  CC  /\  1  e.  CC )  ->  (
( I  +  1 )  =  ( J  +  1 )  <->  I  =  J ) )
3129, 30mp3an3 1413 . . . . . . . . . . . 12  |-  ( ( I  e.  CC  /\  J  e.  CC )  ->  ( ( I  + 
1 )  =  ( J  +  1 )  <-> 
I  =  J ) )
3226, 28, 31syl2an 494 . . . . . . . . . . 11  |-  ( ( I  e.  ( 1 ... ( N  - 
1 ) )  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( I  +  1 )  =  ( J  +  1 )  <->  I  =  J
) )
33323adant1 1079 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) )  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( I  +  1 )  =  ( J  +  1 )  <->  I  =  J
) )
3433necon3bid 2838 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) )  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( I  +  1 )  =/=  ( J  +  1 )  <->  I  =/=  J
) )
3534biimpar 502 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) )  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  /\  I  =/=  J
)  ->  ( I  +  1 )  =/=  ( J  +  1 ) )
368axlowdimlem12 25833 . . . . . . . 8  |-  ( ( ( I  +  1 )  e.  ( 1 ... N )  /\  ( I  +  1
)  =/=  ( J  +  1 ) )  ->  ( R `  ( I  +  1
) )  =  0 )
3720, 35, 36syl2anc 693 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) )  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  /\  I  =/=  J
)  ->  ( R `  ( I  +  1 ) )  =  0 )
3822, 24, 373netr4d 2871 . . . . . 6  |-  ( ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) )  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  /\  I  =/=  J
)  ->  ( Q `  ( I  +  1 ) )  =/=  ( R `  ( I  +  1 ) ) )
39 df-ne 2795 . . . . . . . 8  |-  ( ( Q `  i )  =/=  ( R `  i )  <->  -.  ( Q `  i )  =  ( R `  i ) )
40 fveq2 6191 . . . . . . . . 9  |-  ( i  =  ( I  + 
1 )  ->  ( Q `  i )  =  ( Q `  ( I  +  1
) ) )
41 fveq2 6191 . . . . . . . . 9  |-  ( i  =  ( I  + 
1 )  ->  ( R `  i )  =  ( R `  ( I  +  1
) ) )
4240, 41neeq12d 2855 . . . . . . . 8  |-  ( i  =  ( I  + 
1 )  ->  (
( Q `  i
)  =/=  ( R `
 i )  <->  ( Q `  ( I  +  1 ) )  =/=  ( R `  ( I  +  1 ) ) ) )
4339, 42syl5bbr 274 . . . . . . 7  |-  ( i  =  ( I  + 
1 )  ->  ( -.  ( Q `  i
)  =  ( R `
 i )  <->  ( Q `  ( I  +  1 ) )  =/=  ( R `  ( I  +  1 ) ) ) )
4443rspcev 3309 . . . . . 6  |-  ( ( ( I  +  1 )  e.  ( 1 ... N )  /\  ( Q `  ( I  +  1 ) )  =/=  ( R `  ( I  +  1
) ) )  ->  E. i  e.  (
1 ... N )  -.  ( Q `  i
)  =  ( R `
 i ) )
4520, 38, 44syl2anc 693 . . . . 5  |-  ( ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) )  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  /\  I  =/=  J
)  ->  E. i  e.  ( 1 ... N
)  -.  ( Q `
 i )  =  ( R `  i
) )
4645ex 450 . . . 4  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) )  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  =/= 
J  ->  E. i  e.  ( 1 ... N
)  -.  ( Q `
 i )  =  ( R `  i
) ) )
47 df-ne 2795 . . . 4  |-  ( I  =/=  J  <->  -.  I  =  J )
48 rexnal 2995 . . . 4  |-  ( E. i  e.  ( 1 ... N )  -.  ( Q `  i
)  =  ( R `
 i )  <->  -.  A. i  e.  ( 1 ... N
) ( Q `  i )  =  ( R `  i ) )
4946, 47, 483imtr3g 284 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) )  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( -.  I  =  J  ->  -.  A. i  e.  ( 1 ... N ) ( Q `  i )  =  ( R `  i ) ) )
5049con4d 114 . 2  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) )  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( A. i  e.  ( 1 ... N
) ( Q `  i )  =  ( R `  i )  ->  I  =  J ) )
5117, 50sylbid 230 1  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) )  /\  J  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( Q  =  R  ->  I  =  J ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571    u. cun 3572   {csn 4177   <.cop 4183    X. cxp 5112    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NNcn 11020   ...cfz 12326   EEcee 25768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-ee 25771
This theorem is referenced by:  axlowdimlem15  25836
  Copyright terms: Public domain W3C validator