![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fconst | Structured version Visualization version Unicode version |
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fconst.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
fconst |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | fconstmpt 5163 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | fnmpti 6022 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | rnxpss 5566 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | df-f 5892 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 3, 4, 5 | mpbir2an 955 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-fun 5890 df-fn 5891 df-f 5892 |
This theorem is referenced by: fconstg 6092 fodomr 8111 ofsubeq0 11017 ser0f 12854 hashgval 13120 hashinf 13122 hashfxnn0 13124 hashfOLD 13126 prodf1f 14624 pwssplit1 19059 psrbag0 19494 xkofvcn 21487 ibl0 23553 dvcmul 23707 dvcmulf 23708 dvexp 23716 elqaalem3 24076 basellem7 24813 basellem9 24815 axlowdimlem8 25829 axlowdimlem9 25830 axlowdimlem10 25831 axlowdimlem11 25832 axlowdimlem12 25833 0oo 27644 occllem 28162 ho01i 28687 nlelchi 28920 hmopidmchi 29010 eulerpartlemt 30433 plymul02 30623 breprexpnat 30712 noetalem3 31865 fullfunfnv 32053 fullfunfv 32054 poimirlem16 33425 poimirlem19 33428 poimirlem23 33432 poimirlem24 33433 poimirlem25 33434 poimirlem28 33437 poimirlem29 33438 poimirlem30 33439 poimirlem31 33440 poimirlem32 33441 ftc1anclem5 33489 lfl0f 34356 diophrw 37322 pwssplit4 37659 ofsubid 38523 dvsconst 38529 dvsid 38530 binomcxplemnn0 38548 binomcxplemnotnn0 38555 aacllem 42547 |
Copyright terms: Public domain | W3C validator |