| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bndss | Structured version Visualization version Unicode version | ||
| Description: A subset of a bounded metric space is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| bndss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metres2 22168 |
. . . 4
| |
| 2 | 1 | adantlr 751 |
. . 3
|
| 3 | ssel2 3598 |
. . . . . . . . . . . . 13
| |
| 4 | 3 | ancoms 469 |
. . . . . . . . . . . 12
|
| 5 | oveq1 6657 |
. . . . . . . . . . . . . . 15
| |
| 6 | 5 | eqeq2d 2632 |
. . . . . . . . . . . . . 14
|
| 7 | 6 | rexbidv 3052 |
. . . . . . . . . . . . 13
|
| 8 | 7 | rspcva 3307 |
. . . . . . . . . . . 12
|
| 9 | 4, 8 | sylan 488 |
. . . . . . . . . . 11
|
| 10 | 9 | adantlll 754 |
. . . . . . . . . 10
|
| 11 | dfss 3589 |
. . . . . . . . . . . . . . . . . . 19
| |
| 12 | 11 | biimpi 206 |
. . . . . . . . . . . . . . . . . 18
|
| 13 | incom 3805 |
. . . . . . . . . . . . . . . . . 18
| |
| 14 | 12, 13 | syl6eq 2672 |
. . . . . . . . . . . . . . . . 17
|
| 15 | ineq1 3807 |
. . . . . . . . . . . . . . . . 17
| |
| 16 | 14, 15 | sylan9eq 2676 |
. . . . . . . . . . . . . . . 16
|
| 17 | 16 | adantll 750 |
. . . . . . . . . . . . . . 15
|
| 18 | 17 | adantlr 751 |
. . . . . . . . . . . . . 14
|
| 19 | eqid 2622 |
. . . . . . . . . . . . . . . . . 18
| |
| 20 | 19 | blssp 33552 |
. . . . . . . . . . . . . . . . 17
|
| 21 | 20 | an4s 869 |
. . . . . . . . . . . . . . . 16
|
| 22 | 21 | anassrs 680 |
. . . . . . . . . . . . . . 15
|
| 23 | 22 | adantr 481 |
. . . . . . . . . . . . . 14
|
| 24 | 18, 23 | eqtr4d 2659 |
. . . . . . . . . . . . 13
|
| 25 | 24 | ex 450 |
. . . . . . . . . . . 12
|
| 26 | 25 | reximdva 3017 |
. . . . . . . . . . 11
|
| 27 | 26 | imp 445 |
. . . . . . . . . 10
|
| 28 | 10, 27 | syldan 487 |
. . . . . . . . 9
|
| 29 | 28 | an32s 846 |
. . . . . . . 8
|
| 30 | 29 | ex 450 |
. . . . . . 7
|
| 31 | 30 | an32s 846 |
. . . . . 6
|
| 32 | 31 | imp 445 |
. . . . 5
|
| 33 | 32 | an32s 846 |
. . . 4
|
| 34 | 33 | ralrimiva 2966 |
. . 3
|
| 35 | 2, 34 | jca 554 |
. 2
|
| 36 | isbnd 33579 |
. . 3
| |
| 37 | 36 | anbi1i 731 |
. 2
|
| 38 | isbnd 33579 |
. 2
| |
| 39 | 35, 37, 38 | 3imtr4i 281 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-mulcl 9998 ax-i2m1 10004 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-rp 11833 df-xadd 11947 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-bnd 33578 |
| This theorem is referenced by: ssbnd 33587 |
| Copyright terms: Public domain | W3C validator |