Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssbnd Structured version   Visualization version   Unicode version

Theorem ssbnd 33587
Description: A subset of a metric space is bounded iff it is contained in a ball around  P, for any  P in the larger space. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypothesis
Ref Expression
ssbnd.2  |-  N  =  ( M  |`  ( Y  X.  Y ) )
Assertion
Ref Expression
ssbnd  |-  ( ( M  e.  ( Met `  X )  /\  P  e.  X )  ->  ( N  e.  ( Bnd `  Y )  <->  E. d  e.  RR  Y  C_  ( P ( ball `  M
) d ) ) )
Distinct variable groups:    M, d    N, d    P, d    X, d    Y, d

Proof of Theorem ssbnd
Dummy variables  r 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 10040 . . . . . . 7  |-  0  e.  RR
21ne0ii 3923 . . . . . 6  |-  RR  =/=  (/)
3 0ss 3972 . . . . . . . 8  |-  (/)  C_  ( P ( ball `  M
) d )
4 sseq1 3626 . . . . . . . 8  |-  ( Y  =  (/)  ->  ( Y 
C_  ( P (
ball `  M )
d )  <->  (/)  C_  ( P ( ball `  M
) d ) ) )
53, 4mpbiri 248 . . . . . . 7  |-  ( Y  =  (/)  ->  Y  C_  ( P ( ball `  M
) d ) )
65ralrimivw 2967 . . . . . 6  |-  ( Y  =  (/)  ->  A. d  e.  RR  Y  C_  ( P ( ball `  M
) d ) )
7 r19.2z 4060 . . . . . 6  |-  ( ( RR  =/=  (/)  /\  A. d  e.  RR  Y  C_  ( P ( ball `  M ) d ) )  ->  E. d  e.  RR  Y  C_  ( P ( ball `  M
) d ) )
82, 6, 7sylancr 695 . . . . 5  |-  ( Y  =  (/)  ->  E. d  e.  RR  Y  C_  ( P ( ball `  M
) d ) )
98a1i 11 . . . 4  |-  ( ( ( M  e.  ( Met `  X )  /\  P  e.  X
)  /\  N  e.  ( Bnd `  Y ) )  ->  ( Y  =  (/)  ->  E. d  e.  RR  Y  C_  ( P ( ball `  M
) d ) ) )
10 isbnd2 33582 . . . . . 6  |-  ( ( N  e.  ( Bnd `  Y )  /\  Y  =/=  (/) )  <->  ( N  e.  ( *Met `  Y )  /\  E. y  e.  Y  E. r  e.  RR+  Y  =  ( y ( ball `  N ) r ) ) )
11 simplll 798 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  M  e.  ( Met `  X ) )
12 ssbnd.2 . . . . . . . . . . . . . . . . . . . . 21  |-  N  =  ( M  |`  ( Y  X.  Y ) )
1312dmeqi 5325 . . . . . . . . . . . . . . . . . . . 20  |-  dom  N  =  dom  ( M  |`  ( Y  X.  Y
) )
14 dmres 5419 . . . . . . . . . . . . . . . . . . . 20  |-  dom  ( M  |`  ( Y  X.  Y ) )  =  ( ( Y  X.  Y )  i^i  dom  M )
1513, 14eqtri 2644 . . . . . . . . . . . . . . . . . . 19  |-  dom  N  =  ( ( Y  X.  Y )  i^i 
dom  M )
16 xmetf 22134 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ( *Met `  Y )  ->  N : ( Y  X.  Y ) --> RR* )
17 fdm 6051 . . . . . . . . . . . . . . . . . . . 20  |-  ( N : ( Y  X.  Y ) --> RR*  ->  dom 
N  =  ( Y  X.  Y ) )
1816, 17syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ( *Met `  Y )  ->  dom  N  =  ( Y  X.  Y ) )
1915, 18syl5eqr 2670 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ( *Met `  Y )  ->  (
( Y  X.  Y
)  i^i  dom  M )  =  ( Y  X.  Y ) )
20 df-ss 3588 . . . . . . . . . . . . . . . . . 18  |-  ( ( Y  X.  Y ) 
C_  dom  M  <->  ( ( Y  X.  Y )  i^i 
dom  M )  =  ( Y  X.  Y
) )
2119, 20sylibr 224 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( *Met `  Y )  ->  ( Y  X.  Y )  C_  dom  M )
2221ad2antlr 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  ( Y  X.  Y )  C_  dom  M )
23 metf 22135 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  ( Met `  X
)  ->  M :
( X  X.  X
) --> RR )
24 fdm 6051 . . . . . . . . . . . . . . . . . 18  |-  ( M : ( X  X.  X ) --> RR  ->  dom 
M  =  ( X  X.  X ) )
2523, 24syl 17 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  ( Met `  X
)  ->  dom  M  =  ( X  X.  X
) )
2625ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  dom  M  =  ( X  X.  X
) )
2722, 26sseqtrd 3641 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  ( Y  X.  Y )  C_  ( X  X.  X ) )
28 dmss 5323 . . . . . . . . . . . . . . 15  |-  ( ( Y  X.  Y ) 
C_  ( X  X.  X )  ->  dom  ( Y  X.  Y
)  C_  dom  ( X  X.  X ) )
2927, 28syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  dom  ( Y  X.  Y )  C_  dom  ( X  X.  X
) )
30 dmxpid 5345 . . . . . . . . . . . . . 14  |-  dom  ( Y  X.  Y )  =  Y
31 dmxpid 5345 . . . . . . . . . . . . . 14  |-  dom  ( X  X.  X )  =  X
3229, 30, 313sstr3g 3645 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  Y  C_  X
)
33 simprl 794 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  y  e.  Y )
3432, 33sseldd 3604 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  y  e.  X )
35 simpllr 799 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  P  e.  X )
36 metcl 22137 . . . . . . . . . . . 12  |-  ( ( M  e.  ( Met `  X )  /\  y  e.  X  /\  P  e.  X )  ->  (
y M P )  e.  RR )
3711, 34, 35, 36syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  ( y M P )  e.  RR )
38 rpre 11839 . . . . . . . . . . . 12  |-  ( r  e.  RR+  ->  r  e.  RR )
3938ad2antll 765 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  r  e.  RR )
4037, 39readdcld 10069 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  ( (
y M P )  +  r )  e.  RR )
41 metxmet 22139 . . . . . . . . . . . . 13  |-  ( M  e.  ( Met `  X
)  ->  M  e.  ( *Met `  X
) )
4211, 41syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  M  e.  ( *Met `  X
) )
4334, 33elind 3798 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  y  e.  ( X  i^i  Y ) )
44 rpxr 11840 . . . . . . . . . . . . 13  |-  ( r  e.  RR+  ->  r  e. 
RR* )
4544ad2antll 765 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  r  e.  RR* )
4612blres 22236 . . . . . . . . . . . 12  |-  ( ( M  e.  ( *Met `  X )  /\  y  e.  ( X  i^i  Y )  /\  r  e.  RR* )  ->  ( y (
ball `  N )
r )  =  ( ( y ( ball `  M ) r )  i^i  Y ) )
4742, 43, 45, 46syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  ( y
( ball `  N )
r )  =  ( ( y ( ball `  M ) r )  i^i  Y ) )
48 inss1 3833 . . . . . . . . . . . 12  |-  ( ( y ( ball `  M
) r )  i^i 
Y )  C_  (
y ( ball `  M
) r )
4937leidd 10594 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  ( y M P )  <_  (
y M P ) )
5037recnd 10068 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  ( y M P )  e.  CC )
5139recnd 10068 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  r  e.  CC )
5250, 51pncand 10393 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  ( (
( y M P )  +  r )  -  r )  =  ( y M P ) )
5349, 52breqtrrd 4681 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  ( y M P )  <_  (
( ( y M P )  +  r )  -  r ) )
54 blss2 22209 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( *Met `  X
)  /\  y  e.  X  /\  P  e.  X
)  /\  ( r  e.  RR  /\  ( ( y M P )  +  r )  e.  RR  /\  ( y M P )  <_ 
( ( ( y M P )  +  r )  -  r
) ) )  -> 
( y ( ball `  M ) r ) 
C_  ( P (
ball `  M )
( ( y M P )  +  r ) ) )
5542, 34, 35, 39, 40, 53, 54syl33anc 1341 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  ( y
( ball `  M )
r )  C_  ( P ( ball `  M
) ( ( y M P )  +  r ) ) )
5648, 55syl5ss 3614 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  ( (
y ( ball `  M
) r )  i^i 
Y )  C_  ( P ( ball `  M
) ( ( y M P )  +  r ) ) )
5747, 56eqsstrd 3639 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  ( y
( ball `  N )
r )  C_  ( P ( ball `  M
) ( ( y M P )  +  r ) ) )
58 oveq2 6658 . . . . . . . . . . . 12  |-  ( d  =  ( ( y M P )  +  r )  ->  ( P ( ball `  M
) d )  =  ( P ( ball `  M ) ( ( y M P )  +  r ) ) )
5958sseq2d 3633 . . . . . . . . . . 11  |-  ( d  =  ( ( y M P )  +  r )  ->  (
( y ( ball `  N ) r ) 
C_  ( P (
ball `  M )
d )  <->  ( y
( ball `  N )
r )  C_  ( P ( ball `  M
) ( ( y M P )  +  r ) ) ) )
6059rspcev 3309 . . . . . . . . . 10  |-  ( ( ( ( y M P )  +  r )  e.  RR  /\  ( y ( ball `  N ) r ) 
C_  ( P (
ball `  M )
( ( y M P )  +  r ) ) )  ->  E. d  e.  RR  ( y ( ball `  N ) r ) 
C_  ( P (
ball `  M )
d ) )
6140, 57, 60syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  E. d  e.  RR  ( y (
ball `  N )
r )  C_  ( P ( ball `  M
) d ) )
62 sseq1 3626 . . . . . . . . . 10  |-  ( Y  =  ( y (
ball `  N )
r )  ->  ( Y  C_  ( P (
ball `  M )
d )  <->  ( y
( ball `  N )
r )  C_  ( P ( ball `  M
) d ) ) )
6362rexbidv 3052 . . . . . . . . 9  |-  ( Y  =  ( y (
ball `  N )
r )  ->  ( E. d  e.  RR  Y  C_  ( P (
ball `  M )
d )  <->  E. d  e.  RR  ( y (
ball `  N )
r )  C_  ( P ( ball `  M
) d ) ) )
6461, 63syl5ibrcom 237 . . . . . . . 8  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  P  e.  X )  /\  N  e.  ( *Met `  Y ) )  /\  ( y  e.  Y  /\  r  e.  RR+ )
)  ->  ( Y  =  ( y (
ball `  N )
r )  ->  E. d  e.  RR  Y  C_  ( P ( ball `  M
) d ) ) )
6564rexlimdvva 3038 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  P  e.  X
)  /\  N  e.  ( *Met `  Y
) )  ->  ( E. y  e.  Y  E. r  e.  RR+  Y  =  ( y ( ball `  N ) r )  ->  E. d  e.  RR  Y  C_  ( P (
ball `  M )
d ) ) )
6665expimpd 629 . . . . . 6  |-  ( ( M  e.  ( Met `  X )  /\  P  e.  X )  ->  (
( N  e.  ( *Met `  Y
)  /\  E. y  e.  Y  E. r  e.  RR+  Y  =  ( y ( ball `  N
) r ) )  ->  E. d  e.  RR  Y  C_  ( P (
ball `  M )
d ) ) )
6710, 66syl5bi 232 . . . . 5  |-  ( ( M  e.  ( Met `  X )  /\  P  e.  X )  ->  (
( N  e.  ( Bnd `  Y )  /\  Y  =/=  (/) )  ->  E. d  e.  RR  Y  C_  ( P (
ball `  M )
d ) ) )
6867expdimp 453 . . . 4  |-  ( ( ( M  e.  ( Met `  X )  /\  P  e.  X
)  /\  N  e.  ( Bnd `  Y ) )  ->  ( Y  =/=  (/)  ->  E. d  e.  RR  Y  C_  ( P ( ball `  M
) d ) ) )
699, 68pm2.61dne 2880 . . 3  |-  ( ( ( M  e.  ( Met `  X )  /\  P  e.  X
)  /\  N  e.  ( Bnd `  Y ) )  ->  E. d  e.  RR  Y  C_  ( P ( ball `  M
) d ) )
7069ex 450 . 2  |-  ( ( M  e.  ( Met `  X )  /\  P  e.  X )  ->  ( N  e.  ( Bnd `  Y )  ->  E. d  e.  RR  Y  C_  ( P ( ball `  M
) d ) ) )
71 simprr 796 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  P  e.  X
)  /\  ( d  e.  RR  /\  Y  C_  ( P ( ball `  M
) d ) ) )  ->  Y  C_  ( P ( ball `  M
) d ) )
72 xpss12 5225 . . . . . . 7  |-  ( ( Y  C_  ( P
( ball `  M )
d )  /\  Y  C_  ( P ( ball `  M ) d ) )  ->  ( Y  X.  Y )  C_  (
( P ( ball `  M ) d )  X.  ( P (
ball `  M )
d ) ) )
7371, 71, 72syl2anc 693 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  P  e.  X
)  /\  ( d  e.  RR  /\  Y  C_  ( P ( ball `  M
) d ) ) )  ->  ( Y  X.  Y )  C_  (
( P ( ball `  M ) d )  X.  ( P (
ball `  M )
d ) ) )
7473resabs1d 5428 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  P  e.  X
)  /\  ( d  e.  RR  /\  Y  C_  ( P ( ball `  M
) d ) ) )  ->  ( ( M  |`  ( ( P ( ball `  M
) d )  X.  ( P ( ball `  M ) d ) ) )  |`  ( Y  X.  Y ) )  =  ( M  |`  ( Y  X.  Y
) ) )
7574, 12syl6eqr 2674 . . . 4  |-  ( ( ( M  e.  ( Met `  X )  /\  P  e.  X
)  /\  ( d  e.  RR  /\  Y  C_  ( P ( ball `  M
) d ) ) )  ->  ( ( M  |`  ( ( P ( ball `  M
) d )  X.  ( P ( ball `  M ) d ) ) )  |`  ( Y  X.  Y ) )  =  N )
76 blbnd 33586 . . . . . . . 8  |-  ( ( M  e.  ( *Met `  X )  /\  P  e.  X  /\  d  e.  RR )  ->  ( M  |`  ( ( P (
ball `  M )
d )  X.  ( P ( ball `  M
) d ) ) )  e.  ( Bnd `  ( P ( ball `  M ) d ) ) )
7741, 76syl3an1 1359 . . . . . . 7  |-  ( ( M  e.  ( Met `  X )  /\  P  e.  X  /\  d  e.  RR )  ->  ( M  |`  ( ( P ( ball `  M
) d )  X.  ( P ( ball `  M ) d ) ) )  e.  ( Bnd `  ( P ( ball `  M
) d ) ) )
78773expa 1265 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  P  e.  X
)  /\  d  e.  RR )  ->  ( M  |`  ( ( P (
ball `  M )
d )  X.  ( P ( ball `  M
) d ) ) )  e.  ( Bnd `  ( P ( ball `  M ) d ) ) )
7978adantrr 753 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  P  e.  X
)  /\  ( d  e.  RR  /\  Y  C_  ( P ( ball `  M
) d ) ) )  ->  ( M  |`  ( ( P (
ball `  M )
d )  X.  ( P ( ball `  M
) d ) ) )  e.  ( Bnd `  ( P ( ball `  M ) d ) ) )
80 bndss 33585 . . . . 5  |-  ( ( ( M  |`  (
( P ( ball `  M ) d )  X.  ( P (
ball `  M )
d ) ) )  e.  ( Bnd `  ( P ( ball `  M
) d ) )  /\  Y  C_  ( P ( ball `  M
) d ) )  ->  ( ( M  |`  ( ( P (
ball `  M )
d )  X.  ( P ( ball `  M
) d ) ) )  |`  ( Y  X.  Y ) )  e.  ( Bnd `  Y
) )
8179, 71, 80syl2anc 693 . . . 4  |-  ( ( ( M  e.  ( Met `  X )  /\  P  e.  X
)  /\  ( d  e.  RR  /\  Y  C_  ( P ( ball `  M
) d ) ) )  ->  ( ( M  |`  ( ( P ( ball `  M
) d )  X.  ( P ( ball `  M ) d ) ) )  |`  ( Y  X.  Y ) )  e.  ( Bnd `  Y
) )
8275, 81eqeltrrd 2702 . . 3  |-  ( ( ( M  e.  ( Met `  X )  /\  P  e.  X
)  /\  ( d  e.  RR  /\  Y  C_  ( P ( ball `  M
) d ) ) )  ->  N  e.  ( Bnd `  Y ) )
8382rexlimdvaa 3032 . 2  |-  ( ( M  e.  ( Met `  X )  /\  P  e.  X )  ->  ( E. d  e.  RR  Y  C_  ( P (
ball `  M )
d )  ->  N  e.  ( Bnd `  Y
) ) )
8470, 83impbid 202 1  |-  ( ( M  e.  ( Met `  X )  /\  P  e.  X )  ->  ( N  e.  ( Bnd `  Y )  <->  E. d  e.  RR  Y  C_  ( P ( ball `  M
) d ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653    X. cxp 5112   dom cdm 5114    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936    + caddc 9939   RR*cxr 10073    <_ cle 10075    - cmin 10266   RR+crp 11832   *Metcxmt 19731   Metcme 19732   ballcbl 19733   Bndcbnd 33566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-ec 7744  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-bnd 33578
This theorem is referenced by:  prdsbnd2  33594  cntotbnd  33595
  Copyright terms: Public domain W3C validator