Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj938 Structured version   Visualization version   Unicode version

Theorem bnj938 31007
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj938.1  |-  D  =  ( om  \  { (/)
} )
bnj938.2  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
bnj938.3  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
bnj938.4  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj938.5  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
Assertion
Ref Expression
bnj938  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  ta  /\  si )  ->  U_ y  e.  (
f `  p )  pred ( y ,  A ,  R )  e.  _V )
Distinct variable groups:    A, i, p, y    R, i, p, y    f, i, p, y    i, m, p
Allowed substitution hints:    ta( y, f, i, m, n, p)    si( y, f, i, m, n, p)    A( f, m, n)    D( y, f, i, m, n, p)    R( f, m, n)    X( y, f, i, m, n, p)    ph'( y, f, i, m, n, p)    ps'( y, f, i, m, n, p)

Proof of Theorem bnj938
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elisset 3215 . . 3  |-  ( X  e.  A  ->  E. x  x  =  X )
21bnj706 30824 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  ta  /\  si )  ->  E. x  x  =  X )
3 bnj291 30777 . . . . . 6  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  ta  /\  si )  <->  ( ( R  FrSe  A  /\  ta  /\ 
si )  /\  X  e.  A ) )
43simplbi 476 . . . . 5  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  ta  /\  si )  -> 
( R  FrSe  A  /\  ta  /\  si )
)
5 bnj602 30985 . . . . . . . . . 10  |-  ( x  =  X  ->  pred (
x ,  A ,  R )  =  pred ( X ,  A ,  R ) )
65eqeq2d 2632 . . . . . . . . 9  |-  ( x  =  X  ->  (
( f `  (/) )  = 
pred ( x ,  A ,  R )  <-> 
( f `  (/) )  = 
pred ( X ,  A ,  R )
) )
7 bnj938.4 . . . . . . . . 9  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( X ,  A ,  R )
)
86, 7syl6bbr 278 . . . . . . . 8  |-  ( x  =  X  ->  (
( f `  (/) )  = 
pred ( x ,  A ,  R )  <->  ph' ) )
983anbi2d 1404 . . . . . . 7  |-  ( x  =  X  ->  (
( f  Fn  m  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps' )  <->  ( f  Fn  m  /\  ph'  /\  ps' ) ) )
10 bnj938.2 . . . . . . 7  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
119, 10syl6bbr 278 . . . . . 6  |-  ( x  =  X  ->  (
( f  Fn  m  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps' )  <->  ta )
)
12113anbi2d 1404 . . . . 5  |-  ( x  =  X  ->  (
( R  FrSe  A  /\  ( f  Fn  m  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps' )  /\  si ) 
<->  ( R  FrSe  A  /\  ta  /\  si )
) )
134, 12syl5ibr 236 . . . 4  |-  ( x  =  X  ->  (
( R  FrSe  A  /\  X  e.  A  /\  ta  /\  si )  ->  ( R  FrSe  A  /\  ( f  Fn  m  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps' )  /\  si ) ) )
14 bnj938.1 . . . . 5  |-  D  =  ( om  \  { (/)
} )
15 biid 251 . . . . 5  |-  ( ( f  Fn  m  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps' )  <->  ( f  Fn  m  /\  (
f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps' ) )
16 bnj938.3 . . . . 5  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
17 biid 251 . . . . 5  |-  ( ( f `  (/) )  = 
pred ( x ,  A ,  R )  <-> 
( f `  (/) )  = 
pred ( x ,  A ,  R ) )
18 bnj938.5 . . . . 5  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
1914, 15, 16, 17, 18bnj546 30966 . . . 4  |-  ( ( R  FrSe  A  /\  ( f  Fn  m  /\  ( f `  (/) )  = 
pred ( x ,  A ,  R )  /\  ps' )  /\  si )  ->  U_ y  e.  ( f `  p ) 
pred ( y ,  A ,  R )  e.  _V )
2013, 19syl6 35 . . 3  |-  ( x  =  X  ->  (
( R  FrSe  A  /\  X  e.  A  /\  ta  /\  si )  ->  U_ y  e.  ( f `  p ) 
pred ( y ,  A ,  R )  e.  _V ) )
2120exlimiv 1858 . 2  |-  ( E. x  x  =  X  ->  ( ( R 
FrSe  A  /\  X  e.  A  /\  ta  /\  si )  ->  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )  e.  _V ) )
222, 21mpcom 38 1  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  ta  /\  si )  ->  U_ y  e.  (
f `  p )  pred ( y ,  A ,  R )  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571   (/)c0 3915   {csn 4177   U_ciun 4520   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065    /\ w-bnj17 30752    predc-bnj14 30754    FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759
This theorem is referenced by:  bnj944  31008  bnj969  31016
  Copyright terms: Public domain W3C validator