MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equivcau Structured version   Visualization version   Unicode version

Theorem equivcau 23098
Description: If the metric  D is "strongly finer" than  C (meaning that there is a positive real constant 
R such that  C ( x ,  y )  <_  R  x.  D (
x ,  y )), all the  D-Cauchy sequences are also  C-Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivcau.1  |-  ( ph  ->  C  e.  ( Met `  X ) )
equivcau.2  |-  ( ph  ->  D  e.  ( Met `  X ) )
equivcau.3  |-  ( ph  ->  R  e.  RR+ )
equivcau.4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  <_  ( R  x.  ( x D y ) ) )
Assertion
Ref Expression
equivcau  |-  ( ph  ->  ( Cau `  D
)  C_  ( Cau `  C ) )
Distinct variable groups:    x, y, C    x, D, y    ph, x, y    x, R, y    x, X, y

Proof of Theorem equivcau
Dummy variables  f 
k  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  ->  r  e.  RR+ )
2 equivcau.3 . . . . . . . 8  |-  ( ph  ->  R  e.  RR+ )
32ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  ->  R  e.  RR+ )
41, 3rpdivcld 11889 . . . . . 6  |-  ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  ->  (
r  /  R )  e.  RR+ )
5 oveq2 6658 . . . . . . . . 9  |-  ( s  =  ( r  /  R )  ->  (
( f `  k
) ( ball `  D
) s )  =  ( ( f `  k ) ( ball `  D ) ( r  /  R ) ) )
65feq3d 6032 . . . . . . . 8  |-  ( s  =  ( r  /  R )  ->  (
( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
s )  <->  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) ( r  /  R ) ) ) )
76rexbidv 3052 . . . . . . 7  |-  ( s  =  ( r  /  R )  ->  ( E. k  e.  ZZ  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
s )  <->  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) ( r  /  R ) ) ) )
87rspcv 3305 . . . . . 6  |-  ( ( r  /  R )  e.  RR+  ->  ( A. s  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) s )  ->  E. k  e.  ZZ  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )
94, 8syl 17 . . . . 5  |-  ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  ->  ( A. s  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) s )  ->  E. k  e.  ZZ  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )
10 simprr 796 . . . . . . . 8  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) ( r  /  R ) ) )
11 elpmi 7876 . . . . . . . . . . . 12  |-  ( f  e.  ( X  ^pm  CC )  ->  ( f : dom  f --> X  /\  dom  f  C_  CC ) )
1211simpld 475 . . . . . . . . . . 11  |-  ( f  e.  ( X  ^pm  CC )  ->  f : dom  f --> X )
1312ad3antlr 767 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  f : dom  f
--> X )
14 resss 5422 . . . . . . . . . . . 12  |-  ( f  |`  ( ZZ>= `  k )
)  C_  f
15 dmss 5323 . . . . . . . . . . . 12  |-  ( ( f  |`  ( ZZ>= `  k ) )  C_  f  ->  dom  ( f  |`  ( ZZ>= `  k )
)  C_  dom  f )
1614, 15ax-mp 5 . . . . . . . . . . 11  |-  dom  (
f  |`  ( ZZ>= `  k
) )  C_  dom  f
17 uzid 11702 . . . . . . . . . . . . 13  |-  ( k  e.  ZZ  ->  k  e.  ( ZZ>= `  k )
)
1817ad2antrl 764 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  k  e.  (
ZZ>= `  k ) )
19 fdm 6051 . . . . . . . . . . . . 13  |-  ( ( f  |`  ( ZZ>= `  k ) ) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D ) ( r  /  R ) )  ->  dom  ( f  |`  ( ZZ>= `  k )
)  =  ( ZZ>= `  k ) )
2019ad2antll 765 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  dom  ( f  |`  ( ZZ>= `  k )
)  =  ( ZZ>= `  k ) )
2118, 20eleqtrrd 2704 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  k  e.  dom  ( f  |`  ( ZZ>=
`  k ) ) )
2216, 21sseldi 3601 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  k  e.  dom  f )
2313, 22ffvelrnd 6360 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  ( f `  k )  e.  X
)
24 eqid 2622 . . . . . . . . . . . . 13  |-  ( MetOpen `  C )  =  (
MetOpen `  C )
25 eqid 2622 . . . . . . . . . . . . 13  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
26 equivcau.1 . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  ( Met `  X ) )
27 equivcau.2 . . . . . . . . . . . . 13  |-  ( ph  ->  D  e.  ( Met `  X ) )
28 equivcau.4 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  <_  ( R  x.  ( x D y ) ) )
2924, 25, 26, 27, 2, 28metss2lem 22316 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  X  /\  r  e.  RR+ ) )  -> 
( x ( ball `  D ) ( r  /  R ) ) 
C_  ( x (
ball `  C )
r ) )
3029expr 643 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  (
r  e.  RR+  ->  ( x ( ball `  D
) ( r  /  R ) )  C_  ( x ( ball `  C ) r ) ) )
3130ralrimiva 2966 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  X  ( r  e.  RR+  ->  ( x ( ball `  D ) ( r  /  R ) ) 
C_  ( x (
ball `  C )
r ) ) )
3231ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  A. x  e.  X  ( r  e.  RR+  ->  ( x ( ball `  D ) ( r  /  R ) ) 
C_  ( x (
ball `  C )
r ) ) )
33 simplr 792 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  r  e.  RR+ )
34 oveq1 6657 . . . . . . . . . . . 12  |-  ( x  =  ( f `  k )  ->  (
x ( ball `  D
) ( r  /  R ) )  =  ( ( f `  k ) ( ball `  D ) ( r  /  R ) ) )
35 oveq1 6657 . . . . . . . . . . . 12  |-  ( x  =  ( f `  k )  ->  (
x ( ball `  C
) r )  =  ( ( f `  k ) ( ball `  C ) r ) )
3634, 35sseq12d 3634 . . . . . . . . . . 11  |-  ( x  =  ( f `  k )  ->  (
( x ( ball `  D ) ( r  /  R ) ) 
C_  ( x (
ball `  C )
r )  <->  ( (
f `  k )
( ball `  D )
( r  /  R
) )  C_  (
( f `  k
) ( ball `  C
) r ) ) )
3736imbi2d 330 . . . . . . . . . 10  |-  ( x  =  ( f `  k )  ->  (
( r  e.  RR+  ->  ( x ( ball `  D ) ( r  /  R ) ) 
C_  ( x (
ball `  C )
r ) )  <->  ( r  e.  RR+  ->  ( (
f `  k )
( ball `  D )
( r  /  R
) )  C_  (
( f `  k
) ( ball `  C
) r ) ) ) )
3837rspcv 3305 . . . . . . . . 9  |-  ( ( f `  k )  e.  X  ->  ( A. x  e.  X  ( r  e.  RR+  ->  ( x ( ball `  D ) ( r  /  R ) ) 
C_  ( x (
ball `  C )
r ) )  -> 
( r  e.  RR+  ->  ( ( f `  k ) ( ball `  D ) ( r  /  R ) ) 
C_  ( ( f `
 k ) (
ball `  C )
r ) ) ) )
3923, 32, 33, 38syl3c 66 . . . . . . . 8  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  ( ( f `
 k ) (
ball `  D )
( r  /  R
) )  C_  (
( f `  k
) ( ball `  C
) r ) )
4010, 39fssd 6057 . . . . . . 7  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  ( k  e.  ZZ  /\  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) ) ) )  ->  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  C
) r ) )
4140expr 643 . . . . . 6  |-  ( ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  /\  k  e.  ZZ )  ->  ( ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) ( r  /  R ) )  -> 
( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  C )
r ) ) )
4241reximdva 3017 . . . . 5  |-  ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  ->  ( E. k  e.  ZZ  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
( r  /  R
) )  ->  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  C
) r ) ) )
439, 42syld 47 . . . 4  |-  ( ( ( ph  /\  f  e.  ( X  ^pm  CC ) )  /\  r  e.  RR+ )  ->  ( A. s  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) s )  ->  E. k  e.  ZZ  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  C )
r ) ) )
4443ralrimdva 2969 . . 3  |-  ( (
ph  /\  f  e.  ( X  ^pm  CC ) )  ->  ( A. s  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) s )  ->  A. r  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  C
) r ) ) )
4544ss2rabdv 3683 . 2  |-  ( ph  ->  { f  e.  ( X  ^pm  CC )  |  A. s  e.  RR+  E. k  e.  ZZ  (
f  |`  ( ZZ>= `  k
) ) : (
ZZ>= `  k ) --> ( ( f `  k
) ( ball `  D
) s ) } 
C_  { f  e.  ( X  ^pm  CC )  |  A. r  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  C
) r ) } )
46 metxmet 22139 . . 3  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
47 caufval 23073 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( Cau `  D )  =  { f  e.  ( X  ^pm  CC )  |  A. s  e.  RR+  E. k  e.  ZZ  (
f  |`  ( ZZ>= `  k
) ) : (
ZZ>= `  k ) --> ( ( f `  k
) ( ball `  D
) s ) } )
4827, 46, 473syl 18 . 2  |-  ( ph  ->  ( Cau `  D
)  =  { f  e.  ( X  ^pm  CC )  |  A. s  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) s ) } )
49 metxmet 22139 . . 3  |-  ( C  e.  ( Met `  X
)  ->  C  e.  ( *Met `  X
) )
50 caufval 23073 . . 3  |-  ( C  e.  ( *Met `  X )  ->  ( Cau `  C )  =  { f  e.  ( X  ^pm  CC )  |  A. r  e.  RR+  E. k  e.  ZZ  (
f  |`  ( ZZ>= `  k
) ) : (
ZZ>= `  k ) --> ( ( f `  k
) ( ball `  C
) r ) } )
5126, 49, 503syl 18 . 2  |-  ( ph  ->  ( Cau `  C
)  =  { f  e.  ( X  ^pm  CC )  |  A. r  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  C
) r ) } )
5245, 48, 513sstr4d 3648 1  |-  ( ph  ->  ( Cau `  D
)  C_  ( Cau `  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   class class class wbr 4653   dom cdm 5114    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934    x. cmul 9941    <_ cle 10075    / cdiv 10684   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   *Metcxmt 19731   Metcme 19732   ballcbl 19733   MetOpencmopn 19736   Caucca 23051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-cau 23054
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator