Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme11e Structured version   Visualization version   Unicode version

Theorem cdleme11e 35550
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 35557. (Contributed by NM, 13-Jun-2012.)
Hypotheses
Ref Expression
cdleme11.l  |-  .<_  =  ( le `  K )
cdleme11.j  |-  .\/  =  ( join `  K )
cdleme11.m  |-  ./\  =  ( meet `  K )
cdleme11.a  |-  A  =  ( Atoms `  K )
cdleme11.h  |-  H  =  ( LHyp `  K
)
cdleme11.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme11.c  |-  C  =  ( ( P  .\/  S )  ./\  W )
cdleme11.d  |-  D  =  ( ( P  .\/  T )  ./\  W )
Assertion
Ref Expression
cdleme11e  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  C  =/=  D )

Proof of Theorem cdleme11e
StepHypRef Expression
1 simp11 1091 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp12 1092 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp22 1095 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  T  e.  A )
4 simp21 1094 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
5 simp11l 1172 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  K  e.  HL )
6 hllat 34650 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
75, 6syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  K  e.  Lat )
8 simp12l 1174 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  P  e.  A )
9 eqid 2622 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
10 cdleme11.a . . . . . 6  |-  A  =  ( Atoms `  K )
119, 10atbase 34576 . . . . 5  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
128, 11syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  P  e.  ( Base `  K
) )
13 simp21l 1178 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  S  e.  A )
149, 10atbase 34576 . . . . 5  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
1513, 14syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  S  e.  ( Base `  K
) )
169, 10atbase 34576 . . . . 5  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
173, 16syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  T  e.  ( Base `  K
) )
18 simp1 1061 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A ) )
19 simp2 1062 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  (
( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
) )
20 simp32 1098 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
21 simp33 1099 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  U  .<_  ( S  .\/  T
) )
22 cdleme11.l . . . . . 6  |-  .<_  =  ( le `  K )
23 cdleme11.j . . . . . 6  |-  .\/  =  ( join `  K )
24 cdleme11.m . . . . . 6  |-  ./\  =  ( meet `  K )
25 cdleme11.h . . . . . 6  |-  H  =  ( LHyp `  K
)
26 cdleme11.u . . . . . 6  |-  U  =  ( ( P  .\/  Q )  ./\  W )
2722, 23, 24, 10, 25, 26cdleme11c 35548 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  -.  P  .<_  ( S  .\/  T ) )
2818, 19, 20, 21, 27syl112anc 1330 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  -.  P  .<_  ( S  .\/  T ) )
299, 22, 23latnlej1r 17070 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  S  e.  ( Base `  K )  /\  T  e.  ( Base `  K
) )  /\  -.  P  .<_  ( S  .\/  T ) )  ->  P  =/=  T )
307, 12, 15, 17, 28, 29syl131anc 1339 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  P  =/=  T )
31 simp31 1097 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  S  =/=  T )
3222, 23, 10hlatcon2 34738 . . . 4  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  P  e.  A
)  /\  ( S  =/=  T  /\  -.  P  .<_  ( S  .\/  T
) ) )  ->  -.  S  .<_  ( P 
.\/  T ) )
335, 13, 3, 8, 31, 28, 32syl132anc 1344 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  -.  S  .<_  ( P  .\/  T ) )
34 cdleme11.d . . . 4  |-  D  =  ( ( P  .\/  T )  ./\  W )
35 cdleme11.c . . . 4  |-  C  =  ( ( P  .\/  S )  ./\  W )
3622, 23, 24, 10, 25, 34, 35cdleme0e 35504 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  T  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  T  /\  -.  S  .<_  ( P  .\/  T ) ) )  ->  D  =/=  C )
371, 2, 3, 4, 30, 33, 36syl132anc 1344 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  D  =/=  C )
3837necomd 2849 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  C  =/=  D )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   Atomscatm 34550   HLchlt 34637   LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274
This theorem is referenced by:  cdleme11l  35556
  Copyright terms: Public domain W3C validator