| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme0e | Structured version Visualization version Unicode version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 13-Jun-2012.) |
| Ref | Expression |
|---|---|
| cdleme0.l |
|
| cdleme0.j |
|
| cdleme0.m |
|
| cdleme0.a |
|
| cdleme0.h |
|
| cdleme0.u |
|
| cdleme0c.3 |
|
| Ref | Expression |
|---|---|
| cdleme0e |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme0.u |
. . . . 5
| |
| 2 | cdleme0c.3 |
. . . . 5
| |
| 3 | 1, 2 | oveq12i 6662 |
. . . 4
|
| 4 | simp1l 1085 |
. . . . . . 7
| |
| 5 | hlol 34648 |
. . . . . . 7
| |
| 6 | 4, 5 | syl 17 |
. . . . . 6
|
| 7 | simp21l 1178 |
. . . . . . 7
| |
| 8 | simp22 1095 |
. . . . . . 7
| |
| 9 | eqid 2622 |
. . . . . . . 8
| |
| 10 | cdleme0.j |
. . . . . . . 8
| |
| 11 | cdleme0.a |
. . . . . . . 8
| |
| 12 | 9, 10, 11 | hlatjcl 34653 |
. . . . . . 7
|
| 13 | 4, 7, 8, 12 | syl3anc 1326 |
. . . . . 6
|
| 14 | simp23l 1182 |
. . . . . . 7
| |
| 15 | 9, 10, 11 | hlatjcl 34653 |
. . . . . . 7
|
| 16 | 4, 7, 14, 15 | syl3anc 1326 |
. . . . . 6
|
| 17 | simp1r 1086 |
. . . . . . 7
| |
| 18 | cdleme0.h |
. . . . . . . 8
| |
| 19 | 9, 18 | lhpbase 35284 |
. . . . . . 7
|
| 20 | 17, 19 | syl 17 |
. . . . . 6
|
| 21 | cdleme0.m |
. . . . . . 7
| |
| 22 | 9, 21 | latmmdir 34522 |
. . . . . 6
|
| 23 | 6, 13, 16, 20, 22 | syl13anc 1328 |
. . . . 5
|
| 24 | hllat 34650 |
. . . . . . . . 9
| |
| 25 | 4, 24 | syl 17 |
. . . . . . . 8
|
| 26 | 9, 11 | atbase 34576 |
. . . . . . . . 9
|
| 27 | 14, 26 | syl 17 |
. . . . . . . 8
|
| 28 | 9, 11 | atbase 34576 |
. . . . . . . . 9
|
| 29 | 7, 28 | syl 17 |
. . . . . . . 8
|
| 30 | 9, 11 | atbase 34576 |
. . . . . . . . 9
|
| 31 | 8, 30 | syl 17 |
. . . . . . . 8
|
| 32 | simp3r 1090 |
. . . . . . . 8
| |
| 33 | cdleme0.l |
. . . . . . . . . 10
| |
| 34 | 9, 33, 10 | latnlej1r 17070 |
. . . . . . . . 9
|
| 35 | 34 | necomd 2849 |
. . . . . . . 8
|
| 36 | 25, 27, 29, 31, 32, 35 | syl131anc 1339 |
. . . . . . 7
|
| 37 | simp3 1063 |
. . . . . . . 8
| |
| 38 | 33, 10, 11 | hlatcon3 34737 |
. . . . . . . 8
|
| 39 | 4, 7, 8, 14, 37, 38 | syl131anc 1339 |
. . . . . . 7
|
| 40 | 33, 10, 21, 11 | 2llnma2 35075 |
. . . . . . 7
|
| 41 | 4, 8, 14, 7, 36, 39, 40 | syl132anc 1344 |
. . . . . 6
|
| 42 | 41 | oveq1d 6665 |
. . . . 5
|
| 43 | 23, 42 | eqtr3d 2658 |
. . . 4
|
| 44 | 3, 43 | syl5eq 2668 |
. . 3
|
| 45 | simp1 1061 |
. . . 4
| |
| 46 | simp21 1094 |
. . . 4
| |
| 47 | eqid 2622 |
. . . . 5
| |
| 48 | 33, 21, 47, 11, 18 | lhpmat 35316 |
. . . 4
|
| 49 | 45, 46, 48 | syl2anc 693 |
. . 3
|
| 50 | 44, 49 | eqtrd 2656 |
. 2
|
| 51 | hlatl 34647 |
. . . 4
| |
| 52 | 4, 51 | syl 17 |
. . 3
|
| 53 | simp3l 1089 |
. . . 4
| |
| 54 | 33, 10, 21, 11, 18, 1 | lhpat2 35331 |
. . . 4
|
| 55 | 45, 46, 8, 53, 54 | syl112anc 1330 |
. . 3
|
| 56 | 9, 33, 10 | latnlej1l 17069 |
. . . . . 6
|
| 57 | 56 | necomd 2849 |
. . . . 5
|
| 58 | 25, 27, 29, 31, 32, 57 | syl131anc 1339 |
. . . 4
|
| 59 | 33, 10, 21, 11, 18, 2 | lhpat2 35331 |
. . . 4
|
| 60 | 45, 46, 14, 58, 59 | syl112anc 1330 |
. . 3
|
| 61 | 21, 47, 11 | atnem0 34605 |
. . 3
|
| 62 | 52, 55, 60, 61 | syl3anc 1326 |
. 2
|
| 63 | 50, 62 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-lhyp 35274 |
| This theorem is referenced by: cdleme3fN 35520 cdleme3g 35521 cdleme11e 35550 |
| Copyright terms: Public domain | W3C validator |