Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme17b Structured version   Visualization version   Unicode version

Theorem cdleme17b 35574
Description: Lemma leading to cdleme17c 35575. (Contributed by NM, 11-Oct-2012.)
Hypotheses
Ref Expression
cdleme17.l  |-  .<_  =  ( le `  K )
cdleme17.j  |-  .\/  =  ( join `  K )
cdleme17.m  |-  ./\  =  ( meet `  K )
cdleme17.a  |-  A  =  ( Atoms `  K )
cdleme17.h  |-  H  =  ( LHyp `  K
)
cdleme17.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme17.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme17.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme17.c  |-  C  =  ( ( P  .\/  S )  ./\  W )
Assertion
Ref Expression
cdleme17b  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  C  .<_  ( P  .\/  Q
) )

Proof of Theorem cdleme17b
StepHypRef Expression
1 simp33 1099 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  S  .<_  ( P  .\/  Q
) )
2 eqid 2622 . . 3  |-  ( Base `  K )  =  (
Base `  K )
3 cdleme17.l . . 3  |-  .<_  =  ( le `  K )
4 simpl1l 1112 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  K  e.  HL )
5 hllat 34650 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
64, 5syl 17 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  K  e.  Lat )
7 simpl32 1143 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  S  e.  A )
8 cdleme17.a . . . . 5  |-  A  =  ( Atoms `  K )
92, 8atbase 34576 . . . 4  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
107, 9syl 17 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  S  e.  ( Base `  K
) )
11 simpl2l 1114 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  P  e.  A )
12 cdleme17.j . . . . 5  |-  .\/  =  ( join `  K )
132, 12, 8hlatjcl 34653 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  ( P  .\/  S
)  e.  ( Base `  K ) )
144, 11, 7, 13syl3anc 1326 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  ( P  .\/  S )  e.  ( Base `  K
) )
15 simpl31 1142 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  Q  e.  A )
162, 12, 8hlatjcl 34653 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
174, 11, 15, 16syl3anc 1326 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
183, 12, 8hlatlej2 34662 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  ->  S  .<_  ( P  .\/  S ) )
194, 11, 7, 18syl3anc 1326 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  S  .<_  ( P  .\/  S
) )
20 simpl1r 1113 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  W  e.  H )
21 simpl2r 1115 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  -.  P  .<_  W )
22 cdleme17.m . . . . . 6  |-  ./\  =  ( meet `  K )
23 cdleme17.h . . . . . 6  |-  H  =  ( LHyp `  K
)
24 cdleme17.c . . . . . 6  |-  C  =  ( ( P  .\/  S )  ./\  W )
253, 12, 22, 8, 23, 24cdleme8 35537 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  S  e.  A )  ->  ( P  .\/  C )  =  ( P  .\/  S
) )
264, 20, 11, 21, 7, 25syl221anc 1337 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  ( P  .\/  C )  =  ( P  .\/  S
) )
273, 12, 8hlatlej1 34661 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  P  .<_  ( P  .\/  Q ) )
284, 11, 15, 27syl3anc 1326 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  P  .<_  ( P  .\/  Q
) )
29 simpr 477 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  C  .<_  ( P  .\/  Q
) )
302, 8atbase 34576 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
3111, 30syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  P  e.  ( Base `  K
) )
322, 12, 22, 8, 23, 24cdleme9b 35539 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  W  e.  H
) )  ->  C  e.  ( Base `  K
) )
334, 11, 7, 20, 32syl13anc 1328 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  C  e.  ( Base `  K
) )
342, 3, 12latjle12 17062 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  C  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( P  .\/  Q )  /\  C  .<_  ( P 
.\/  Q ) )  <-> 
( P  .\/  C
)  .<_  ( P  .\/  Q ) ) )
356, 31, 33, 17, 34syl13anc 1328 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  (
( P  .<_  ( P 
.\/  Q )  /\  C  .<_  ( P  .\/  Q ) )  <->  ( P  .\/  C )  .<_  ( P 
.\/  Q ) ) )
3628, 29, 35mpbi2and 956 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  ( P  .\/  C )  .<_  ( P  .\/  Q ) )
3726, 36eqbrtrrd 4677 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  ( P  .\/  S )  .<_  ( P  .\/  Q ) )
382, 3, 6, 10, 14, 17, 19, 37lattrd 17058 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q
) ) )  /\  C  .<_  ( P  .\/  Q ) )  ->  S  .<_  ( P  .\/  Q
) )
391, 38mtand 691 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  C  .<_  ( P  .\/  Q
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   Atomscatm 34550   HLchlt 34637   LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274
This theorem is referenced by:  cdleme17c  35575
  Copyright terms: Public domain W3C validator