Proof of Theorem cdleme7c
Step | Hyp | Ref
| Expression |
1 | | cdleme4.u |
. . . 4
  
  |
2 | | cdleme7.v |
. . . 4
  
  |
3 | 1, 2 | oveq12i 6662 |
. . 3
      
      |
4 | | simp11 1091 |
. . . . . . . 8
     
 
 
    
 
   
    |
5 | | simp12l 1174 |
. . . . . . . 8
     
 
 
    
 
   
  |
6 | | simp13 1093 |
. . . . . . . 8
     
 
 
    
 
   
  |
7 | | simp2l 1087 |
. . . . . . . 8
     
 
 
    
 
   

   |
8 | | simp32 1098 |
. . . . . . . 8
     
 
 
    
 
   
    |
9 | | cdleme4.l |
. . . . . . . . 9
     |
10 | | cdleme4.j |
. . . . . . . . 9
     |
11 | | cdleme4.m |
. . . . . . . . 9
     |
12 | | cdleme4.a |
. . . . . . . . 9
     |
13 | | cdleme4.h |
. . . . . . . . 9
     |
14 | 9, 10, 11, 12, 13, 1 | cdleme4 35525 |
. . . . . . . 8
                 |
15 | 4, 5, 6, 7, 8, 14 | syl131anc 1339 |
. . . . . . 7
     
 
 
    
 
   
      |
16 | 15 | oveq1d 6665 |
. . . . . 6
     
 
 
    
 
   
   
          |
17 | | simp11l 1172 |
. . . . . . 7
     
 
 
    
 
   
  |
18 | | simp12 1092 |
. . . . . . . 8
     
 
 
    
 
   

   |
19 | | simp31 1097 |
. . . . . . . 8
     
 
 
    
 
   
  |
20 | 9, 10, 11, 12, 13, 1 | lhpat2 35331 |
. . . . . . . 8
      
    |
21 | 4, 18, 6, 19, 20 | syl112anc 1330 |
. . . . . . 7
     
 
 
    
 
   
  |
22 | | simp2rl 1130 |
. . . . . . 7
     
 
 
    
 
   
  |
23 | | simp2ll 1128 |
. . . . . . 7
     
 
 
    
 
   
  |
24 | | hllat 34650 |
. . . . . . . . . . 11
   |
25 | 17, 24 | syl 17 |
. . . . . . . . . 10
     
 
 
    
 
   
  |
26 | | eqid 2622 |
. . . . . . . . . . . 12
         |
27 | 26, 10, 12 | hlatjcl 34653 |
. . . . . . . . . . 11
 
         |
28 | 17, 5, 6, 27 | syl3anc 1326 |
. . . . . . . . . 10
     
 
 
    
 
   
        |
29 | | simp11r 1173 |
. . . . . . . . . . 11
     
 
 
    
 
   
  |
30 | 26, 13 | lhpbase 35284 |
. . . . . . . . . . 11
       |
31 | 29, 30 | syl 17 |
. . . . . . . . . 10
     
 
 
    
 
   
      |
32 | 26, 9, 11 | latmle2 17077 |
. . . . . . . . . 10
  
    
    
   
  |
33 | 25, 28, 31, 32 | syl3anc 1326 |
. . . . . . . . 9
     
 
 
    
 
   
   
  |
34 | 1, 33 | syl5eqbr 4688 |
. . . . . . . 8
     
 
 
    
 
   
  |
35 | | simp2rr 1131 |
. . . . . . . 8
     
 
 
    
 
   
  |
36 | | nbrne2 4673 |
. . . . . . . 8
 
   |
37 | 34, 35, 36 | syl2anc 693 |
. . . . . . 7
     
 
 
    
 
   
  |
38 | | cdleme4.f |
. . . . . . . 8
  
   
    |
39 | | cdleme4.g |
. . . . . . . 8
  
   
    |
40 | 9, 10, 11, 12, 13, 1, 38, 39 | cdleme7aa 35529 |
. . . . . . 7
     
 
 
    
 
   
    |
41 | 9, 10, 11, 12 | 2llnma2 35075 |
. . . . . . 7
  

       
     |
42 | 17, 21, 22, 23, 37, 40, 41 | syl132anc 1344 |
. . . . . 6
     
 
 
    
 
   
   
    |
43 | 16, 42 | eqtrd 2656 |
. . . . 5
     
 
 
    
 
   
   
    |
44 | 43 | oveq1d 6665 |
. . . 4
     
 
 
    
 
   
   
        |
45 | | hlol 34648 |
. . . . . 6
   |
46 | 17, 45 | syl 17 |
. . . . 5
     
 
 
    
 
   
  |
47 | 26, 10, 12 | hlatjcl 34653 |
. . . . . 6
 
         |
48 | 17, 23, 22, 47 | syl3anc 1326 |
. . . . 5
     
 
 
    
 
   
        |
49 | 26, 11 | latmmdir 34522 |
. . . . 5
              
         
       
   
    |
50 | 46, 28, 48, 31, 49 | syl13anc 1328 |
. . . 4
     
 
 
    
 
   
   
       
   
    |
51 | | eqid 2622 |
. . . . . 6
         |
52 | 9, 11, 51, 12, 13 | lhpmat 35316 |
. . . . 5
               |
53 | 4, 7, 52 | syl2anc 693 |
. . . 4
     
 
 
    
 
   
        |
54 | 44, 50, 53 | 3eqtr3d 2664 |
. . 3
     
 
 
    
 
   
   
   
        |
55 | 3, 54 | syl5eq 2668 |
. 2
     
 
 
    
 
   
        |
56 | | hlatl 34647 |
. . . 4
   |
57 | 17, 56 | syl 17 |
. . 3
     
 
 
    
 
   
  |
58 | | simp33 1099 |
. . . 4
     
 
 
    
 
   
    |
59 | 9, 10, 11, 12, 13, 1, 38, 39, 2 | cdleme7b 35531 |
. . . 4
      
     
  |
60 | 4, 7, 22, 58, 8, 59 | syl113anc 1338 |
. . 3
     
 
 
    
 
   
  |
61 | 11, 51, 12 | atnem0 34605 |
. . 3
 
 
         |
62 | 57, 21, 60, 61 | syl3anc 1326 |
. 2
     
 
 
    
 
   
          |
63 | 55, 62 | mpbird 247 |
1
     
 
 
    
 
   
  |