Proof of Theorem cdleme7ga
Step | Hyp | Ref
| Expression |
1 | | cdleme4.g |
. 2
  
   
    |
2 | | simp11l 1172 |
. . 3
     
       
    
   
  |
3 | | simp12l 1174 |
. . . 4
     
       
    
   
  |
4 | | simp13l 1176 |
. . . 4
     
       
    
   
  |
5 | | eqid 2622 |
. . . . 5
         |
6 | | cdleme4.j |
. . . . 5
     |
7 | | cdleme4.a |
. . . . 5
     |
8 | 5, 6, 7 | hlatjcl 34653 |
. . . 4
 
         |
9 | 2, 3, 4, 8 | syl3anc 1326 |
. . 3
     
       
    
            |
10 | | simp11 1091 |
. . . . 5
     
       
    
        |
11 | | simp12 1092 |
. . . . 5
     
       
    
        |
12 | | simp13 1093 |
. . . . 5
     
       
    
        |
13 | | simp2r 1088 |
. . . . 5
     
       
    
        |
14 | | simp31 1097 |
. . . . 5
     
       
    
      |
15 | | simp33 1099 |
. . . . 5
     
       
    
   
    |
16 | | cdleme4.l |
. . . . . 6
     |
17 | | cdleme4.m |
. . . . . 6
     |
18 | | cdleme4.h |
. . . . . 6
     |
19 | | cdleme4.u |
. . . . . 6
  
  |
20 | | cdleme4.f |
. . . . . 6
  
   
    |
21 | 16, 6, 17, 7, 18, 19, 20 | cdleme3fa 35523 |
. . . . 5
       
    
   
  |
22 | 10, 11, 12, 13, 14, 15, 21 | syl132anc 1344 |
. . . 4
     
       
    
   
  |
23 | | simp2l 1087 |
. . . . 5
     
       
    
        |
24 | | simp2rl 1130 |
. . . . 5
     
       
    
   
  |
25 | | simp32 1098 |
. . . . 5
     
       
    
        |
26 | | eqid 2622 |
. . . . . 6
      
  |
27 | 16, 6, 17, 7, 18, 19, 20, 1, 26 | cdleme7b 35531 |
. . . . 5
      
        
   |
28 | 10, 23, 24, 15, 25, 27 | syl113anc 1338 |
. . . 4
     
       
    
      
   |
29 | 5, 6, 7 | hlatjcl 34653 |
. . . 4
 
  
              |
30 | 2, 22, 28, 29 | syl3anc 1326 |
. . 3
     
       
    
       
        |
31 | | hllat 34650 |
. . . . 5
   |
32 | 2, 31 | syl 17 |
. . . 4
     
       
    
   
  |
33 | | eqid 2622 |
. . . . 5
         |
34 | | eqid 2622 |
. . . . 5
         |
35 | 6, 7, 33, 34 | linepmap 35061 |
. . . 4
  


       
        |
36 | 32, 3, 4, 14, 35 | syl31anc 1329 |
. . 3
     
       
    
                    |
37 | | simp2ll 1128 |
. . . . . . 7
     
       
    
   
  |
38 | 5, 6, 7 | hlatjcl 34653 |
. . . . . . 7
 
         |
39 | 2, 37, 24, 38 | syl3anc 1326 |
. . . . . 6
     
       
    
            |
40 | | simp11r 1173 |
. . . . . . 7
     
       
    
   
  |
41 | 5, 18 | lhpbase 35284 |
. . . . . . 7
       |
42 | 40, 41 | syl 17 |
. . . . . 6
     
       
    
   
      |
43 | 5, 16, 17 | latmle2 17077 |
. . . . . 6
  
    
    
   
  |
44 | 32, 39, 42, 43 | syl3anc 1326 |
. . . . 5
     
       
    
      
   |
45 | 16, 6, 17, 7, 18, 19, 20 | cdleme3 35524 |
. . . . . 6
       
    
   
  |
46 | 10, 11, 12, 13, 14, 15, 45 | syl132anc 1344 |
. . . . 5
     
       
    
   
  |
47 | | nbrne2 4673 |
. . . . . 6
    
    
   |
48 | 47 | necomd 2849 |
. . . . 5
    
    
   |
49 | 44, 46, 48 | syl2anc 693 |
. . . 4
     
       
    
          |
50 | 6, 7, 33, 34 | linepmap 35061 |
. . . 4
     
    
 
       
            |
51 | 32, 22, 28, 49, 50 | syl31anc 1329 |
. . 3
     
       
    
              
         |
52 | 5, 7 | atbase 34576 |
. . . . . 6
       |
53 | 22, 52 | syl 17 |
. . . . 5
     
       
    
   
      |
54 | 5, 17 | latmcl 17052 |
. . . . . 6
  
    
    
          |
55 | 32, 39, 42, 54 | syl3anc 1326 |
. . . . 5
     
       
    
      
       |
56 | 5, 16, 6 | latlej2 17061 |
. . . . 5
 
      
        
    
    |
57 | 32, 53, 55, 56 | syl3anc 1326 |
. . . 4
     
       
    
      
    
    |
58 | 16, 6, 17, 7, 18, 19, 20, 1, 26 | cdleme7c 35532 |
. . . . . . . 8
     
 
 
    
 
   
  
   |
59 | 10, 11, 4, 23, 13, 14, 25, 15, 58 | syl323anc 1356 |
. . . . . . 7
     
       
    
          |
60 | 59 | necomd 2849 |
. . . . . 6
     
       
    
      
   |
61 | | hlatl 34647 |
. . . . . . . 8
   |
62 | 2, 61 | syl 17 |
. . . . . . 7
     
       
    
   
  |
63 | 16, 6, 17, 7, 18, 19 | lhpat2 35331 |
. . . . . . . 8
      
    |
64 | 10, 11, 4, 14, 63 | syl112anc 1330 |
. . . . . . 7
     
       
    
   
  |
65 | 16, 7 | atncmp 34599 |
. . . . . . 7
    

    
        |
66 | 62, 28, 64, 65 | syl3anc 1326 |
. . . . . 6
     
       
    
           
    |
67 | 60, 66 | mpbird 247 |
. . . . 5
     
       
    
      
   |
68 | 5, 16, 17 | latlem12 17078 |
. . . . . . . . 9
                
           
    
 
   
       |
69 | 32, 55, 9, 42, 68 | syl13anc 1328 |
. . . . . . . 8
     
       
    
          
    
   
   
    |
70 | 69 | biimpd 219 |
. . . . . . 7
     
       
    
          
    
   
   
    |
71 | 44, 70 | mpan2d 710 |
. . . . . 6
     
       
    
        
    
   
    |
72 | 19 | breq2i 4661 |
. . . . . 6
   
    
      |
73 | 71, 72 | syl6ibr 242 |
. . . . 5
     
       
    
        
    
    |
74 | 67, 73 | mtod 189 |
. . . 4
     
       
    
      
     |
75 | | nbrne1 4672 |
. . . . 5
    
    
 
  
              |
76 | 75 | necomd 2849 |
. . . 4
    
    
 
  
         
    |
77 | 57, 74, 76 | syl2anc 693 |
. . 3
     
       
    
              |
78 | 16, 6, 17, 7, 18, 19, 20, 1, 26 | cdleme7e 35534 |
. . . 4
     
       
    
          |
79 | 1, 78 | syl5eqner 2869 |
. . 3
     
       
    
      
   
         |
80 | | eqid 2622 |
. . . 4
         |
81 | 5, 17, 80, 7, 33, 34 | 2lnat 35070 |
. . 3
                   
                         
              
 
   
           
   
        |
82 | 2, 9, 30, 36, 51, 77, 79, 81 | syl322anc 1354 |
. 2
     
       
    
      
   
     |
83 | 1, 82 | syl5eqel 2705 |
1
     
       
    
   
  |