| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme9 | Structured version Visualization version Unicode version | ||
| Description: Part of proof of Lemma E
in [Crawley] p. 113, 2nd paragraph on p. 114.
|
| Ref | Expression |
|---|---|
| cdleme9.l |
|
| cdleme9.j |
|
| cdleme9.m |
|
| cdleme9.a |
|
| cdleme9.h |
|
| cdleme9.u |
|
| cdleme9.f |
|
| cdleme9.c |
|
| Ref | Expression |
|---|---|
| cdleme9 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme9.l |
. . . 4
| |
| 2 | cdleme9.j |
. . . 4
| |
| 3 | cdleme9.m |
. . . 4
| |
| 4 | cdleme9.a |
. . . 4
| |
| 5 | cdleme9.h |
. . . 4
| |
| 6 | cdleme9.u |
. . . 4
| |
| 7 | cdleme9.f |
. . . 4
| |
| 8 | cdleme9.c |
. . . 4
| |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | cdleme3d 35518 |
. . 3
|
| 10 | 9 | oveq1i 6660 |
. 2
|
| 11 | simp1l 1085 |
. . . 4
| |
| 12 | simp1 1061 |
. . . . 5
| |
| 13 | simp21 1094 |
. . . . 5
| |
| 14 | simp23l 1182 |
. . . . 5
| |
| 15 | hllat 34650 |
. . . . . . 7
| |
| 16 | 11, 15 | syl 17 |
. . . . . 6
|
| 17 | eqid 2622 |
. . . . . . . 8
| |
| 18 | 17, 4 | atbase 34576 |
. . . . . . 7
|
| 19 | 14, 18 | syl 17 |
. . . . . 6
|
| 20 | simp21l 1178 |
. . . . . . 7
| |
| 21 | 17, 4 | atbase 34576 |
. . . . . . 7
|
| 22 | 20, 21 | syl 17 |
. . . . . 6
|
| 23 | simp22 1095 |
. . . . . . 7
| |
| 24 | 17, 4 | atbase 34576 |
. . . . . . 7
|
| 25 | 23, 24 | syl 17 |
. . . . . 6
|
| 26 | simp3 1063 |
. . . . . 6
| |
| 27 | 17, 1, 2 | latnlej1l 17069 |
. . . . . . 7
|
| 28 | 27 | necomd 2849 |
. . . . . 6
|
| 29 | 16, 19, 22, 25, 26, 28 | syl131anc 1339 |
. . . . 5
|
| 30 | 1, 2, 3, 4, 5, 8 | cdleme9a 35538 |
. . . . 5
|
| 31 | 12, 13, 14, 29, 30 | syl112anc 1330 |
. . . 4
|
| 32 | 1, 2, 3, 4, 5, 6, 17 | cdleme0aa 35497 |
. . . . . 6
|
| 33 | 12, 20, 23, 32 | syl3anc 1326 |
. . . . 5
|
| 34 | 17, 2 | latjcl 17051 |
. . . . 5
|
| 35 | 16, 19, 33, 34 | syl3anc 1326 |
. . . 4
|
| 36 | 17, 2, 4 | hlatjcl 34653 |
. . . . 5
|
| 37 | 11, 23, 31, 36 | syl3anc 1326 |
. . . 4
|
| 38 | 1, 2, 4 | hlatlej2 34662 |
. . . . 5
|
| 39 | 11, 23, 31, 38 | syl3anc 1326 |
. . . 4
|
| 40 | 17, 1, 2, 3, 4 | atmod4i1 35152 |
. . . 4
|
| 41 | 11, 31, 35, 37, 39, 40 | syl131anc 1339 |
. . 3
|
| 42 | 17, 2, 4 | hlatjcl 34653 |
. . . . . . . . . 10
|
| 43 | 11, 20, 14, 42 | syl3anc 1326 |
. . . . . . . . 9
|
| 44 | simp1r 1086 |
. . . . . . . . . 10
| |
| 45 | 17, 5 | lhpbase 35284 |
. . . . . . . . . 10
|
| 46 | 44, 45 | syl 17 |
. . . . . . . . 9
|
| 47 | 1, 2, 4 | hlatlej2 34662 |
. . . . . . . . . 10
|
| 48 | 11, 20, 14, 47 | syl3anc 1326 |
. . . . . . . . 9
|
| 49 | 17, 1, 2, 3, 4 | atmod3i1 35150 |
. . . . . . . . 9
|
| 50 | 11, 14, 43, 46, 48, 49 | syl131anc 1339 |
. . . . . . . 8
|
| 51 | simp23r 1183 |
. . . . . . . . . 10
| |
| 52 | eqid 2622 |
. . . . . . . . . . 11
| |
| 53 | 1, 2, 52, 4, 5 | lhpjat2 35307 |
. . . . . . . . . 10
|
| 54 | 12, 14, 51, 53 | syl12anc 1324 |
. . . . . . . . 9
|
| 55 | 54 | oveq2d 6666 |
. . . . . . . 8
|
| 56 | hlol 34648 |
. . . . . . . . . 10
| |
| 57 | 11, 56 | syl 17 |
. . . . . . . . 9
|
| 58 | 17, 3, 52 | olm11 34514 |
. . . . . . . . 9
|
| 59 | 57, 43, 58 | syl2anc 693 |
. . . . . . . 8
|
| 60 | 50, 55, 59 | 3eqtrrd 2661 |
. . . . . . 7
|
| 61 | 8 | oveq2i 6661 |
. . . . . . 7
|
| 62 | 60, 61 | syl6reqr 2675 |
. . . . . 6
|
| 63 | 62 | oveq1d 6665 |
. . . . 5
|
| 64 | 17, 4 | atbase 34576 |
. . . . . . 7
|
| 65 | 31, 64 | syl 17 |
. . . . . 6
|
| 66 | 17, 2 | latj32 17097 |
. . . . . 6
|
| 67 | 16, 19, 33, 65, 66 | syl13anc 1328 |
. . . . 5
|
| 68 | 2, 4 | hlatj32 34658 |
. . . . . . . 8
|
| 69 | 11, 20, 14, 23, 68 | syl13anc 1328 |
. . . . . . 7
|
| 70 | 17, 2 | latjcom 17059 |
. . . . . . . 8
|
| 71 | 16, 25, 43, 70 | syl3anc 1326 |
. . . . . . 7
|
| 72 | 6 | oveq2i 6661 |
. . . . . . . . 9
|
| 73 | 17, 2, 4 | hlatjcl 34653 |
. . . . . . . . . . . 12
|
| 74 | 11, 20, 23, 73 | syl3anc 1326 |
. . . . . . . . . . 11
|
| 75 | 1, 2, 4 | hlatlej1 34661 |
. . . . . . . . . . . 12
|
| 76 | 11, 20, 23, 75 | syl3anc 1326 |
. . . . . . . . . . 11
|
| 77 | 17, 1, 2, 3, 4 | atmod3i1 35150 |
. . . . . . . . . . 11
|
| 78 | 11, 20, 74, 46, 76, 77 | syl131anc 1339 |
. . . . . . . . . 10
|
| 79 | 1, 2, 52, 4, 5 | lhpjat2 35307 |
. . . . . . . . . . . 12
|
| 80 | 12, 13, 79 | syl2anc 693 |
. . . . . . . . . . 11
|
| 81 | 80 | oveq2d 6666 |
. . . . . . . . . 10
|
| 82 | 17, 3, 52 | olm11 34514 |
. . . . . . . . . . 11
|
| 83 | 57, 74, 82 | syl2anc 693 |
. . . . . . . . . 10
|
| 84 | 78, 81, 83 | 3eqtrd 2660 |
. . . . . . . . 9
|
| 85 | 72, 84 | syl5eq 2668 |
. . . . . . . 8
|
| 86 | 85 | oveq1d 6665 |
. . . . . . 7
|
| 87 | 69, 71, 86 | 3eqtr4d 2666 |
. . . . . 6
|
| 88 | 17, 2 | latj32 17097 |
. . . . . . 7
|
| 89 | 16, 22, 33, 19, 88 | syl13anc 1328 |
. . . . . 6
|
| 90 | 87, 89 | eqtrd 2656 |
. . . . 5
|
| 91 | 63, 67, 90 | 3eqtr4d 2666 |
. . . 4
|
| 92 | 91 | oveq1d 6665 |
. . 3
|
| 93 | 17, 1, 3 | latmle1 17076 |
. . . . . . 7
|
| 94 | 16, 43, 46, 93 | syl3anc 1326 |
. . . . . 6
|
| 95 | 8, 94 | syl5eqbr 4688 |
. . . . 5
|
| 96 | 17, 1, 2 | latjlej2 17066 |
. . . . . 6
|
| 97 | 16, 65, 43, 25, 96 | syl13anc 1328 |
. . . . 5
|
| 98 | 95, 97 | mpd 15 |
. . . 4
|
| 99 | 17, 2 | latjcl 17051 |
. . . . . 6
|
| 100 | 16, 25, 43, 99 | syl3anc 1326 |
. . . . 5
|
| 101 | 17, 1, 3 | latleeqm2 17080 |
. . . . 5
|
| 102 | 16, 37, 100, 101 | syl3anc 1326 |
. . . 4
|
| 103 | 98, 102 | mpbid 222 |
. . 3
|
| 104 | 41, 92, 103 | 3eqtrd 2660 |
. 2
|
| 105 | 10, 104 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 |
| This theorem is referenced by: cdleme9tN 35544 cdleme17a 35573 |
| Copyright terms: Public domain | W3C validator |