Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg27b Structured version   Visualization version   Unicode version

Theorem cdlemg27b 35984
Description: TODO: Fix comment. (Contributed by NM, 28-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg31.n  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
Assertion
Ref Expression
cdlemg27b  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  -.  ( R `  F )  .<_  ( Q 
.\/  z ) )

Proof of Theorem cdlemg27b
StepHypRef Expression
1 simp11 1091 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp12 1092 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp13 1093 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp22 1095 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( v  e.  A  /\  v  .<_  W ) )
5 simp23l 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  F  e.  T
)
6 simp31 1097 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  v  =/=  ( R `  F )
)
7 cdlemg12.l . . . . . 6  |-  .<_  =  ( le `  K )
8 cdlemg12.j . . . . . 6  |-  .\/  =  ( join `  K )
9 cdlemg12.m . . . . . 6  |-  ./\  =  ( meet `  K )
10 cdlemg12.a . . . . . 6  |-  A  =  ( Atoms `  K )
11 cdlemg12.h . . . . . 6  |-  H  =  ( LHyp `  K
)
12 cdlemg12.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
13 cdlemg12b.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
14 cdlemg31.n . . . . . 6  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
157, 8, 9, 10, 11, 12, 13, 14cdlemg31b0a 35983 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  ( N  e.  A  \/  N  =  ( 0. `  K ) ) )
161, 2, 3, 4, 5, 6, 15syl132anc 1344 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( N  e.  A  \/  N  =  ( 0. `  K
) ) )
17 simp23r 1183 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  z  =/=  N
)
1817adantr 481 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  ( N  e.  A  \/  N  =  ( 0. `  K
) ) )  -> 
z  =/=  N )
19 simp11l 1172 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  K  e.  HL )
2019adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  e.  A
)  ->  K  e.  HL )
21 hlatl 34647 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  AtLat )
2220, 21syl 17 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  e.  A
)  ->  K  e.  AtLat
)
23 simpl21 1139 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  e.  A
)  ->  z  e.  A )
24 simpr 477 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  e.  A
)  ->  N  e.  A )
257, 10atcmp 34598 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  z  e.  A  /\  N  e.  A )  ->  (
z  .<_  N  <->  z  =  N ) )
2622, 23, 24, 25syl3anc 1326 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  e.  A
)  ->  ( z  .<_  N  <->  z  =  N ) )
2726necon3bbid 2831 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  e.  A
)  ->  ( -.  z  .<_  N  <->  z  =/=  N ) )
2819adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  K  e.  HL )
2928, 21syl 17 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  K  e.  AtLat
)
30 simpl21 1139 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  z  e.  A )
31 eqid 2622 . . . . . . . . . 10  |-  ( 0.
`  K )  =  ( 0. `  K
)
327, 31, 10atnle0 34596 . . . . . . . . 9  |-  ( ( K  e.  AtLat  /\  z  e.  A )  ->  -.  z  .<_  ( 0. `  K ) )
3329, 30, 32syl2anc 693 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  -.  z  .<_  ( 0. `  K
) )
34 simpr 477 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  N  =  ( 0. `  K ) )
3534breq2d 4665 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  ( z  .<_  N  <->  z  .<_  ( 0.
`  K ) ) )
3633, 35mtbird 315 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  -.  z  .<_  N )
3717adantr 481 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  z  =/=  N )
3836, 372thd 255 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  N  =  ( 0. `  K ) )  ->  ( -.  z  .<_  N  <->  z  =/=  N ) )
3927, 38jaodan 826 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  ( N  e.  A  \/  N  =  ( 0. `  K
) ) )  -> 
( -.  z  .<_  N 
<->  z  =/=  N ) )
4018, 39mpbird 247 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  /\  ( N  e.  A  \/  N  =  ( 0. `  K
) ) )  ->  -.  z  .<_  N )
4116, 40mpdan 702 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  -.  z  .<_  N )
42 simp32 1098 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  z  .<_  ( P 
.\/  v ) )
43 hllat 34650 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
4419, 43syl 17 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  K  e.  Lat )
45 simp21 1094 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  z  e.  A
)
46 eqid 2622 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
4746, 10atbase 34576 . . . . . . . 8  |-  ( z  e.  A  ->  z  e.  ( Base `  K
) )
4845, 47syl 17 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  z  e.  (
Base `  K )
)
49 simp12l 1174 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  P  e.  A
)
50 simp22l 1180 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  v  e.  A
)
5146, 8, 10hlatjcl 34653 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A  /\  v  e.  A )  ->  ( P  .\/  v
)  e.  ( Base `  K ) )
5219, 49, 50, 51syl3anc 1326 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( P  .\/  v )  e.  (
Base `  K )
)
53 simp13l 1176 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  Q  e.  A
)
54 simp33 1099 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( F `  P )  =/=  P
)
557, 10, 11, 12, 13trlat 35456 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
561, 2, 5, 54, 55syl112anc 1330 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
5746, 8, 10hlatjcl 34653 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  ( R `  F )  e.  A )  -> 
( Q  .\/  ( R `  F )
)  e.  ( Base `  K ) )
5819, 53, 56, 57syl3anc 1326 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( Q  .\/  ( R `  F ) )  e.  ( Base `  K ) )
5946, 7, 9latlem12 17078 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( z  e.  (
Base `  K )  /\  ( P  .\/  v
)  e.  ( Base `  K )  /\  ( Q  .\/  ( R `  F ) )  e.  ( Base `  K
) ) )  -> 
( ( z  .<_  ( P  .\/  v )  /\  z  .<_  ( Q 
.\/  ( R `  F ) ) )  <-> 
z  .<_  ( ( P 
.\/  v )  ./\  ( Q  .\/  ( R `
 F ) ) ) ) )
6044, 48, 52, 58, 59syl13anc 1328 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( ( z 
.<_  ( P  .\/  v
)  /\  z  .<_  ( Q  .\/  ( R `
 F ) ) )  <->  z  .<_  ( ( P  .\/  v ) 
./\  ( Q  .\/  ( R `  F ) ) ) ) )
6114breq2i 4661 . . . . . 6  |-  ( z 
.<_  N  <->  z  .<_  ( ( P  .\/  v ) 
./\  ( Q  .\/  ( R `  F ) ) ) )
6260, 61syl6bbr 278 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( ( z 
.<_  ( P  .\/  v
)  /\  z  .<_  ( Q  .\/  ( R `
 F ) ) )  <->  z  .<_  N ) )
6362biimpd 219 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( ( z 
.<_  ( P  .\/  v
)  /\  z  .<_  ( Q  .\/  ( R `
 F ) ) )  ->  z  .<_  N ) )
6442, 63mpand 711 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( z  .<_  ( Q  .\/  ( R `
 F ) )  ->  z  .<_  N ) )
6541, 64mtod 189 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  -.  z  .<_  ( Q  .\/  ( R `
 F ) ) )
667, 11, 12, 13trlle 35471 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  .<_  W )
671, 5, 66syl2anc 693 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  .<_  W )
68 simp13r 1177 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  -.  Q  .<_  W )
69 nbrne2 4673 . . . 4  |-  ( ( ( R `  F
)  .<_  W  /\  -.  Q  .<_  W )  -> 
( R `  F
)  =/=  Q )
7067, 68, 69syl2anc 693 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  =/=  Q
)
717, 8, 10hlatexch1 34681 . . 3  |-  ( ( K  e.  HL  /\  ( ( R `  F )  e.  A  /\  z  e.  A  /\  Q  e.  A
)  /\  ( R `  F )  =/=  Q
)  ->  ( ( R `  F )  .<_  ( Q  .\/  z
)  ->  z  .<_  ( Q  .\/  ( R `
 F ) ) ) )
7219, 56, 45, 53, 70, 71syl131anc 1339 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  ( ( R `
 F )  .<_  ( Q  .\/  z )  ->  z  .<_  ( Q 
.\/  ( R `  F ) ) ) )
7365, 72mtod 189 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( z  e.  A  /\  ( v  e.  A  /\  v  .<_  W )  /\  ( F  e.  T  /\  z  =/= 
N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
.\/  v )  /\  ( F `  P )  =/=  P ) )  ->  -.  ( R `  F )  .<_  ( Q 
.\/  z ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   0.cp0 17037   Latclat 17045   Atomscatm 34550   AtLatcal 34551   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   trLctrl 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446
This theorem is referenced by:  cdlemg28b  35991
  Copyright terms: Public domain W3C validator