Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg7N Structured version   Visualization version   Unicode version

Theorem cdlemg7N 35914
Description: TODO: FIX COMMENT. (Contributed by NM, 28-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg7.b  |-  B  =  ( Base `  K
)
cdlemg7.l  |-  .<_  =  ( le `  K )
cdlemg7.a  |-  A  =  ( Atoms `  K )
cdlemg7.h  |-  H  =  ( LHyp `  K
)
cdlemg7.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemg7N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  ( G `  P )
)  =  P ) )  ->  ( F `  ( G `  X
) )  =  X )

Proof of Theorem cdlemg7N
StepHypRef Expression
1 simpl1 1064 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B
)  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
 ( G `  P ) )  =  P ) )  /\  X  .<_  W )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simpl31 1142 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B
)  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
 ( G `  P ) )  =  P ) )  /\  X  .<_  W )  ->  F  e.  T )
3 simpl32 1143 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B
)  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
 ( G `  P ) )  =  P ) )  /\  X  .<_  W )  ->  G  e.  T )
4 simpl2r 1115 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B
)  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
 ( G `  P ) )  =  P ) )  /\  X  .<_  W )  ->  X  e.  B )
5 cdlemg7.b . . . . . 6  |-  B  =  ( Base `  K
)
6 cdlemg7.h . . . . . 6  |-  H  =  ( LHyp `  K
)
7 cdlemg7.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
85, 6, 7ltrncl 35411 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  X  e.  B
)  ->  ( G `  X )  e.  B
)
91, 3, 4, 8syl3anc 1326 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B
)  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
 ( G `  P ) )  =  P ) )  /\  X  .<_  W )  -> 
( G `  X
)  e.  B )
10 simpr 477 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B
)  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
 ( G `  P ) )  =  P ) )  /\  X  .<_  W )  ->  X  .<_  W )
11 cdlemg7.l . . . . . . 7  |-  .<_  =  ( le `  K )
125, 11, 6, 7ltrnval1 35420 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( G `  X )  =  X )
131, 3, 4, 10, 12syl112anc 1330 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B
)  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
 ( G `  P ) )  =  P ) )  /\  X  .<_  W )  -> 
( G `  X
)  =  X )
1413, 10eqbrtrd 4675 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B
)  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
 ( G `  P ) )  =  P ) )  /\  X  .<_  W )  -> 
( G `  X
)  .<_  W )
155, 11, 6, 7ltrnval1 35420 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( G `  X )  e.  B  /\  ( G `  X
)  .<_  W ) )  ->  ( F `  ( G `  X ) )  =  ( G `
 X ) )
161, 2, 9, 14, 15syl112anc 1330 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B
)  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
 ( G `  P ) )  =  P ) )  /\  X  .<_  W )  -> 
( F `  ( G `  X )
)  =  ( G `
 X ) )
1716, 13eqtrd 2656 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B
)  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
 ( G `  P ) )  =  P ) )  /\  X  .<_  W )  -> 
( F `  ( G `  X )
)  =  X )
18 simpl1 1064 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B
)  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
 ( G `  P ) )  =  P ) )  /\  -.  X  .<_  W )  ->  ( K  e.  HL  /\  W  e.  H ) )
19 simpl2l 1114 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B
)  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
 ( G `  P ) )  =  P ) )  /\  -.  X  .<_  W )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
20 simpl2r 1115 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B
)  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
 ( G `  P ) )  =  P ) )  /\  -.  X  .<_  W )  ->  X  e.  B
)
21 simpr 477 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B
)  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
 ( G `  P ) )  =  P ) )  /\  -.  X  .<_  W )  ->  -.  X  .<_  W )
2220, 21jca 554 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B
)  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
 ( G `  P ) )  =  P ) )  /\  -.  X  .<_  W )  ->  ( X  e.  B  /\  -.  X  .<_  W ) )
23 simpl31 1142 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B
)  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
 ( G `  P ) )  =  P ) )  /\  -.  X  .<_  W )  ->  F  e.  T
)
24 simpl32 1143 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B
)  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
 ( G `  P ) )  =  P ) )  /\  -.  X  .<_  W )  ->  G  e.  T
)
25 simpl33 1144 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B
)  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
 ( G `  P ) )  =  P ) )  /\  -.  X  .<_  W )  ->  ( F `  ( G `  P ) )  =  P )
26 cdlemg7.a . . . 4  |-  A  =  ( Atoms `  K )
275, 11, 26, 6, 7cdlemg7aN 35913 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  ( G `  P ) )  =  P ) )  -> 
( F `  ( G `  X )
)  =  X )
2818, 19, 22, 23, 24, 25, 27syl123anc 1343 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B
)  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
 ( G `  P ) )  =  P ) )  /\  -.  X  .<_  W )  ->  ( F `  ( G `  X ) )  =  X )
2917, 28pm2.61dan 832 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  ( G `  P )
)  =  P ) )  ->  ( F `  ( G `  X
) )  =  X )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948   Atomscatm 34550   HLchlt 34637   LHypclh 35270   LTrncltrn 35387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator