Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg7fvbwN Structured version   Visualization version   Unicode version

Theorem cdlemg7fvbwN 35895
Description: Properties of a translation of an element not under 
W. TODO: Fix comment. Can this be simplified? Perhaps derived from cdleme48bw 35790? Done with a *ltrn* theorem? (Contributed by NM, 28-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg4.l  |-  .<_  =  ( le `  K )
cdlemg4.a  |-  A  =  ( Atoms `  K )
cdlemg4.h  |-  H  =  ( LHyp `  K
)
cdlemg4.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg4.b  |-  B  =  ( Base `  K
)
Assertion
Ref Expression
cdlemg7fvbwN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T )  ->  (
( F `  X
)  e.  B  /\  -.  ( F `  X
)  .<_  W ) )

Proof of Theorem cdlemg7fvbwN
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 cdlemg4.b . . . 4  |-  B  =  ( Base `  K
)
2 cdlemg4.l . . . 4  |-  .<_  =  ( le `  K )
3 eqid 2622 . . . 4  |-  ( join `  K )  =  (
join `  K )
4 eqid 2622 . . . 4  |-  ( meet `  K )  =  (
meet `  K )
5 cdlemg4.a . . . 4  |-  A  =  ( Atoms `  K )
6 cdlemg4.h . . . 4  |-  H  =  ( LHyp `  K
)
71, 2, 3, 4, 5, 6lhpmcvr2 35310 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  ( r (
join `  K )
( X ( meet `  K ) W ) )  =  X ) )
873adant3 1081 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  (
r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )
9 simp11 1091 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
10 simp2 1062 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
r  e.  A )
11 simp3l 1089 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  -.  r  .<_  W )
1210, 11jca 554 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( r  e.  A  /\  -.  r  .<_  W ) )
13 simp12 1092 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( X  e.  B  /\  -.  X  .<_  W ) )
14 simp13 1093 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  F  e.  T )
15 simp3r 1090 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( r ( join `  K ) ( X ( meet `  K
) W ) )  =  X )
16 cdlemg4.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
176, 16, 2, 3, 5, 4, 1cdlemg2fv 35887 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( r  e.  A  /\  -.  r  .<_  W )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( F  e.  T  /\  (
r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( F `  X
)  =  ( ( F `  r ) ( join `  K
) ( X (
meet `  K ) W ) ) )
189, 12, 13, 14, 15, 17syl122anc 1335 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( F `  X
)  =  ( ( F `  r ) ( join `  K
) ( X (
meet `  K ) W ) ) )
19 simp11l 1172 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  K  e.  HL )
20 hllat 34650 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
2119, 20syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  K  e.  Lat )
222, 5, 6, 16ltrnel 35425 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( r  e.  A  /\  -.  r  .<_  W ) )  ->  ( ( F `  r )  e.  A  /\  -.  ( F `  r )  .<_  W ) )
2322simpld 475 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( r  e.  A  /\  -.  r  .<_  W ) )  ->  ( F `  r )  e.  A
)
249, 14, 12, 23syl3anc 1326 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( F `  r
)  e.  A )
251, 5atbase 34576 . . . . . . 7  |-  ( ( F `  r )  e.  A  ->  ( F `  r )  e.  B )
2624, 25syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( F `  r
)  e.  B )
27 simp12l 1174 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  X  e.  B )
28 simp11r 1173 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  W  e.  H )
291, 6lhpbase 35284 . . . . . . . 8  |-  ( W  e.  H  ->  W  e.  B )
3028, 29syl 17 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  W  e.  B )
311, 4latmcl 17052 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X ( meet `  K ) W )  e.  B )
3221, 27, 30, 31syl3anc 1326 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( X ( meet `  K ) W )  e.  B )
331, 3latjcl 17051 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( F `  r )  e.  B  /\  ( X ( meet `  K
) W )  e.  B )  ->  (
( F `  r
) ( join `  K
) ( X (
meet `  K ) W ) )  e.  B )
3421, 26, 32, 33syl3anc 1326 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( ( F `  r ) ( join `  K ) ( X ( meet `  K
) W ) )  e.  B )
3518, 34eqeltrd 2701 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( F `  X
)  e.  B )
3622simprd 479 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( r  e.  A  /\  -.  r  .<_  W ) )  ->  -.  ( F `  r )  .<_  W )
379, 14, 12, 36syl3anc 1326 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  -.  ( F `  r
)  .<_  W )
381, 2, 3latlej1 17060 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( F `  r )  e.  B  /\  ( X ( meet `  K
) W )  e.  B )  ->  ( F `  r )  .<_  ( ( F `  r ) ( join `  K ) ( X ( meet `  K
) W ) ) )
3921, 26, 32, 38syl3anc 1326 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( F `  r
)  .<_  ( ( F `
 r ) (
join `  K )
( X ( meet `  K ) W ) ) )
401, 2lattr 17056 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( ( F `  r )  e.  B  /\  ( ( F `  r ) ( join `  K ) ( X ( meet `  K
) W ) )  e.  B  /\  W  e.  B ) )  -> 
( ( ( F `
 r )  .<_  ( ( F `  r ) ( join `  K ) ( X ( meet `  K
) W ) )  /\  ( ( F `
 r ) (
join `  K )
( X ( meet `  K ) W ) )  .<_  W )  ->  ( F `  r
)  .<_  W ) )
4121, 26, 34, 30, 40syl13anc 1328 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( ( ( F `
 r )  .<_  ( ( F `  r ) ( join `  K ) ( X ( meet `  K
) W ) )  /\  ( ( F `
 r ) (
join `  K )
( X ( meet `  K ) W ) )  .<_  W )  ->  ( F `  r
)  .<_  W ) )
4239, 41mpand 711 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( ( ( F `
 r ) (
join `  K )
( X ( meet `  K ) W ) )  .<_  W  ->  ( F `  r ) 
.<_  W ) )
4337, 42mtod 189 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  -.  ( ( F `  r ) ( join `  K ) ( X ( meet `  K
) W ) ) 
.<_  W )
4418breq1d 4663 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( ( F `  X )  .<_  W  <->  ( ( F `  r )
( join `  K )
( X ( meet `  K ) W ) )  .<_  W )
)
4543, 44mtbird 315 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  -.  ( F `  X
)  .<_  W )
4635, 45jca 554 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( ( F `  X )  e.  B  /\  -.  ( F `  X )  .<_  W ) )
4746rexlimdv3a 3033 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T )  ->  ( E. r  e.  A  ( -.  r  .<_  W  /\  ( r (
join `  K )
( X ( meet `  K ) W ) )  =  X )  ->  ( ( F `
 X )  e.  B  /\  -.  ( F `  X )  .<_  W ) ) )
488, 47mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T )  ->  (
( F `  X
)  e.  B  /\  -.  ( F `  X
)  .<_  W ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   Atomscatm 34550   HLchlt 34637   LHypclh 35270   LTrncltrn 35387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446
This theorem is referenced by:  cdlemg7fvN  35912
  Copyright terms: Public domain W3C validator