MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppccatid Structured version   Visualization version   Unicode version

Theorem oppccatid 16379
Description: Lemma for oppccat 16382. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypothesis
Ref Expression
oppcbas.1  |-  O  =  (oppCat `  C )
Assertion
Ref Expression
oppccatid  |-  ( C  e.  Cat  ->  ( O  e.  Cat  /\  ( Id `  O )  =  ( Id `  C
) ) )

Proof of Theorem oppccatid
Dummy variables  f 
g  h  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcbas.1 . . . . 5  |-  O  =  (oppCat `  C )
2 eqid 2622 . . . . 5  |-  ( Base `  C )  =  (
Base `  C )
31, 2oppcbas 16378 . . . 4  |-  ( Base `  C )  =  (
Base `  O )
43a1i 11 . . 3  |-  ( C  e.  Cat  ->  ( Base `  C )  =  ( Base `  O
) )
5 eqidd 2623 . . 3  |-  ( C  e.  Cat  ->  ( Hom  `  O )  =  ( Hom  `  O
) )
6 eqidd 2623 . . 3  |-  ( C  e.  Cat  ->  (comp `  O )  =  (comp `  O ) )
7 fvex 6201 . . . . 5  |-  (oppCat `  C )  e.  _V
81, 7eqeltri 2697 . . . 4  |-  O  e. 
_V
98a1i 11 . . 3  |-  ( C  e.  Cat  ->  O  e.  _V )
10 biid 251 . . 3  |-  ( ( ( x  e.  (
Base `  C )  /\  y  e.  ( Base `  C ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) )  <-> 
( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )
11 eqid 2622 . . . . 5  |-  ( Hom  `  C )  =  ( Hom  `  C )
12 eqid 2622 . . . . 5  |-  ( Id
`  C )  =  ( Id `  C
)
13 simpl 473 . . . . 5  |-  ( ( C  e.  Cat  /\  y  e.  ( Base `  C ) )  ->  C  e.  Cat )
14 simpr 477 . . . . 5  |-  ( ( C  e.  Cat  /\  y  e.  ( Base `  C ) )  -> 
y  e.  ( Base `  C ) )
152, 11, 12, 13, 14catidcl 16343 . . . 4  |-  ( ( C  e.  Cat  /\  y  e.  ( Base `  C ) )  -> 
( ( Id `  C ) `  y
)  e.  ( y ( Hom  `  C
) y ) )
1611, 1oppchom 16375 . . . 4  |-  ( y ( Hom  `  O
) y )  =  ( y ( Hom  `  C ) y )
1715, 16syl6eleqr 2712 . . 3  |-  ( ( C  e.  Cat  /\  y  e.  ( Base `  C ) )  -> 
( ( Id `  C ) `  y
)  e.  ( y ( Hom  `  O
) y ) )
18 eqid 2622 . . . . 5  |-  (comp `  C )  =  (comp `  C )
19 simpr1l 1118 . . . . 5  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  x  e.  ( Base `  C )
)
20 simpr1r 1119 . . . . 5  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  y  e.  ( Base `  C )
)
212, 18, 1, 19, 20, 20oppcco 16377 . . . 4  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  ( (
( Id `  C
) `  y )
( <. x ,  y
>. (comp `  O )
y ) f )  =  ( f (
<. y ,  y >.
(comp `  C )
x ) ( ( Id `  C ) `
 y ) ) )
22 simpl 473 . . . . 5  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  C  e.  Cat )
23 simpr31 1151 . . . . . 6  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  f  e.  ( x ( Hom  `  O ) y ) )
2411, 1oppchom 16375 . . . . . 6  |-  ( x ( Hom  `  O
) y )  =  ( y ( Hom  `  C ) x )
2523, 24syl6eleq 2711 . . . . 5  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  f  e.  ( y ( Hom  `  C ) x ) )
262, 11, 12, 22, 20, 18, 19, 25catrid 16345 . . . 4  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  ( f
( <. y ,  y
>. (comp `  C )
x ) ( ( Id `  C ) `
 y ) )  =  f )
2721, 26eqtrd 2656 . . 3  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  ( (
( Id `  C
) `  y )
( <. x ,  y
>. (comp `  O )
y ) f )  =  f )
28 simpr2l 1120 . . . . 5  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  z  e.  ( Base `  C )
)
292, 18, 1, 20, 20, 28oppcco 16377 . . . 4  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  ( g
( <. y ,  y
>. (comp `  O )
z ) ( ( Id `  C ) `
 y ) )  =  ( ( ( Id `  C ) `
 y ) (
<. z ,  y >.
(comp `  C )
y ) g ) )
30 simpr32 1152 . . . . . 6  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  g  e.  ( y ( Hom  `  O ) z ) )
3111, 1oppchom 16375 . . . . . 6  |-  ( y ( Hom  `  O
) z )  =  ( z ( Hom  `  C ) y )
3230, 31syl6eleq 2711 . . . . 5  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  g  e.  ( z ( Hom  `  C ) y ) )
332, 11, 12, 22, 28, 18, 20, 32catlid 16344 . . . 4  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  ( (
( Id `  C
) `  y )
( <. z ,  y
>. (comp `  C )
y ) g )  =  g )
3429, 33eqtrd 2656 . . 3  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  ( g
( <. y ,  y
>. (comp `  O )
z ) ( ( Id `  C ) `
 y ) )  =  g )
352, 18, 1, 19, 20, 28oppcco 16377 . . . . 5  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  ( g
( <. x ,  y
>. (comp `  O )
z ) f )  =  ( f (
<. z ,  y >.
(comp `  C )
x ) g ) )
362, 11, 18, 22, 28, 20, 19, 32, 25catcocl 16346 . . . . 5  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  ( f
( <. z ,  y
>. (comp `  C )
x ) g )  e.  ( z ( Hom  `  C )
x ) )
3735, 36eqeltrd 2701 . . . 4  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  ( g
( <. x ,  y
>. (comp `  O )
z ) f )  e.  ( z ( Hom  `  C )
x ) )
3811, 1oppchom 16375 . . . 4  |-  ( x ( Hom  `  O
) z )  =  ( z ( Hom  `  C ) x )
3937, 38syl6eleqr 2712 . . 3  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  ( g
( <. x ,  y
>. (comp `  O )
z ) f )  e.  ( x ( Hom  `  O )
z ) )
40 simpr2r 1121 . . . . . 6  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  w  e.  ( Base `  C )
)
41 simpr33 1153 . . . . . . 7  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  h  e.  ( z ( Hom  `  O ) w ) )
4211, 1oppchom 16375 . . . . . . 7  |-  ( z ( Hom  `  O
) w )  =  ( w ( Hom  `  C ) z )
4341, 42syl6eleq 2711 . . . . . 6  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  h  e.  ( w ( Hom  `  C ) z ) )
442, 11, 18, 22, 40, 28, 20, 43, 32, 19, 25catass 16347 . . . . 5  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  ( (
f ( <. z ,  y >. (comp `  C ) x ) g ) ( <.
w ,  z >.
(comp `  C )
x ) h )  =  ( f (
<. w ,  y >.
(comp `  C )
x ) ( g ( <. w ,  z
>. (comp `  C )
y ) h ) ) )
452, 18, 1, 19, 28, 40oppcco 16377 . . . . 5  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  ( h
( <. x ,  z
>. (comp `  O )
w ) ( f ( <. z ,  y
>. (comp `  C )
x ) g ) )  =  ( ( f ( <. z ,  y >. (comp `  C ) x ) g ) ( <.
w ,  z >.
(comp `  C )
x ) h ) )
462, 18, 1, 19, 20, 40oppcco 16377 . . . . 5  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  ( (
g ( <. w ,  z >. (comp `  C ) y ) h ) ( <.
x ,  y >.
(comp `  O )
w ) f )  =  ( f (
<. w ,  y >.
(comp `  C )
x ) ( g ( <. w ,  z
>. (comp `  C )
y ) h ) ) )
4744, 45, 463eqtr4rd 2667 . . . 4  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  ( (
g ( <. w ,  z >. (comp `  C ) y ) h ) ( <.
x ,  y >.
(comp `  O )
w ) f )  =  ( h (
<. x ,  z >.
(comp `  O )
w ) ( f ( <. z ,  y
>. (comp `  C )
x ) g ) ) )
482, 18, 1, 20, 28, 40oppcco 16377 . . . . 5  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  ( h
( <. y ,  z
>. (comp `  O )
w ) g )  =  ( g (
<. w ,  z >.
(comp `  C )
y ) h ) )
4948oveq1d 6665 . . . 4  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  ( (
h ( <. y ,  z >. (comp `  O ) w ) g ) ( <.
x ,  y >.
(comp `  O )
w ) f )  =  ( ( g ( <. w ,  z
>. (comp `  C )
y ) h ) ( <. x ,  y
>. (comp `  O )
w ) f ) )
5035oveq2d 6666 . . . 4  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  ( h
( <. x ,  z
>. (comp `  O )
w ) ( g ( <. x ,  y
>. (comp `  O )
z ) f ) )  =  ( h ( <. x ,  z
>. (comp `  O )
w ) ( f ( <. z ,  y
>. (comp `  C )
x ) g ) ) )
5147, 49, 503eqtr4d 2666 . . 3  |-  ( ( C  e.  Cat  /\  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
)  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  O ) y )  /\  g  e.  ( y ( Hom  `  O
) z )  /\  h  e.  ( z
( Hom  `  O ) w ) ) ) )  ->  ( (
h ( <. y ,  z >. (comp `  O ) w ) g ) ( <.
x ,  y >.
(comp `  O )
w ) f )  =  ( h (
<. x ,  z >.
(comp `  O )
w ) ( g ( <. x ,  y
>. (comp `  O )
z ) f ) ) )
524, 5, 6, 9, 10, 17, 27, 34, 39, 51iscatd2 16342 . 2  |-  ( C  e.  Cat  ->  ( O  e.  Cat  /\  ( Id `  O )  =  ( y  e.  (
Base `  C )  |->  ( ( Id `  C ) `  y
) ) ) )
532, 12cidfn 16340 . . . . 5  |-  ( C  e.  Cat  ->  ( Id `  C )  Fn  ( Base `  C
) )
54 dffn5 6241 . . . . 5  |-  ( ( Id `  C )  Fn  ( Base `  C
)  <->  ( Id `  C )  =  ( y  e.  ( Base `  C )  |->  ( ( Id `  C ) `
 y ) ) )
5553, 54sylib 208 . . . 4  |-  ( C  e.  Cat  ->  ( Id `  C )  =  ( y  e.  (
Base `  C )  |->  ( ( Id `  C ) `  y
) ) )
5655eqeq2d 2632 . . 3  |-  ( C  e.  Cat  ->  (
( Id `  O
)  =  ( Id
`  C )  <->  ( Id `  O )  =  ( y  e.  ( Base `  C )  |->  ( ( Id `  C ) `
 y ) ) ) )
5756anbi2d 740 . 2  |-  ( C  e.  Cat  ->  (
( O  e.  Cat  /\  ( Id `  O
)  =  ( Id
`  C ) )  <-> 
( O  e.  Cat  /\  ( Id `  O
)  =  ( y  e.  ( Base `  C
)  |->  ( ( Id
`  C ) `  y ) ) ) ) )
5852, 57mpbird 247 1  |-  ( C  e.  Cat  ->  ( O  e.  Cat  /\  ( Id `  O )  =  ( Id `  C
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183    |-> cmpt 4729    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326  oppCatcoppc 16371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-oppc 16372
This theorem is referenced by:  oppcid  16381  oppccat  16382
  Copyright terms: Public domain W3C validator