MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curfcl Structured version   Visualization version   Unicode version

Theorem curfcl 16872
Description: The curry functor of a functor  F : C  X.  D --> E is a functor curryF  ( F ) : C --> ( D --> E ). (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curfcl.g  |-  G  =  ( <. C ,  D >. curryF  F
)
curfcl.q  |-  Q  =  ( D FuncCat  E )
curfcl.c  |-  ( ph  ->  C  e.  Cat )
curfcl.d  |-  ( ph  ->  D  e.  Cat )
curfcl.f  |-  ( ph  ->  F  e.  ( ( C  X.c  D )  Func  E
) )
Assertion
Ref Expression
curfcl  |-  ( ph  ->  G  e.  ( C 
Func  Q ) )

Proof of Theorem curfcl
Dummy variables  w  g  x  y  z 
f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfcl.g . . . 4  |-  G  =  ( <. C ,  D >. curryF  F
)
2 eqid 2622 . . . 4  |-  ( Base `  C )  =  (
Base `  C )
3 curfcl.c . . . 4  |-  ( ph  ->  C  e.  Cat )
4 curfcl.d . . . 4  |-  ( ph  ->  D  e.  Cat )
5 curfcl.f . . . 4  |-  ( ph  ->  F  e.  ( ( C  X.c  D )  Func  E
) )
6 eqid 2622 . . . 4  |-  ( Base `  D )  =  (
Base `  D )
7 eqid 2622 . . . 4  |-  ( Hom  `  D )  =  ( Hom  `  D )
8 eqid 2622 . . . 4  |-  ( Id
`  C )  =  ( Id `  C
)
9 eqid 2622 . . . 4  |-  ( Hom  `  C )  =  ( Hom  `  C )
10 eqid 2622 . . . 4  |-  ( Id
`  D )  =  ( Id `  D
)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10curfval 16863 . . 3  |-  ( ph  ->  G  =  <. (
x  e.  ( Base `  C )  |->  <. (
y  e.  ( Base `  D )  |->  ( x ( 1st `  F
) y ) ) ,  ( y  e.  ( Base `  D
) ,  z  e.  ( Base `  D
)  |->  ( g  e.  ( y ( Hom  `  D ) z ) 
|->  ( ( ( Id
`  C ) `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. ) ,  ( x  e.  ( Base `  C ) ,  y  e.  ( Base `  C
)  |->  ( g  e.  ( x ( Hom  `  C ) y ) 
|->  ( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) ) >. )
12 fvex 6201 . . . . . . 7  |-  ( Base `  C )  e.  _V
1312mptex 6486 . . . . . 6  |-  ( x  e.  ( Base `  C
)  |->  <. ( y  e.  ( Base `  D
)  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  (
Base `  D ) ,  z  e.  ( Base `  D )  |->  ( g  e.  ( y ( Hom  `  D
) z )  |->  ( ( ( Id `  C ) `  x
) ( <. x ,  y >. ( 2nd `  F ) <.
x ,  z >.
) g ) ) ) >. )  e.  _V
1412, 12mpt2ex 7247 . . . . . 6  |-  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( g  e.  ( x ( Hom  `  C ) y ) 
|->  ( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) )  e.  _V
1513, 14op1std 7178 . . . . 5  |-  ( G  =  <. ( x  e.  ( Base `  C
)  |->  <. ( y  e.  ( Base `  D
)  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  (
Base `  D ) ,  z  e.  ( Base `  D )  |->  ( g  e.  ( y ( Hom  `  D
) z )  |->  ( ( ( Id `  C ) `  x
) ( <. x ,  y >. ( 2nd `  F ) <.
x ,  z >.
) g ) ) ) >. ) ,  ( x  e.  ( Base `  C ) ,  y  e.  ( Base `  C
)  |->  ( g  e.  ( x ( Hom  `  C ) y ) 
|->  ( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) ) >.  ->  ( 1st `  G )  =  ( x  e.  (
Base `  C )  |-> 
<. ( y  e.  (
Base `  D )  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  ( Base `  D
) ,  z  e.  ( Base `  D
)  |->  ( g  e.  ( y ( Hom  `  D ) z ) 
|->  ( ( ( Id
`  C ) `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. ) )
1611, 15syl 17 . . . 4  |-  ( ph  ->  ( 1st `  G
)  =  ( x  e.  ( Base `  C
)  |->  <. ( y  e.  ( Base `  D
)  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  (
Base `  D ) ,  z  e.  ( Base `  D )  |->  ( g  e.  ( y ( Hom  `  D
) z )  |->  ( ( ( Id `  C ) `  x
) ( <. x ,  y >. ( 2nd `  F ) <.
x ,  z >.
) g ) ) ) >. ) )
1713, 14op2ndd 7179 . . . . 5  |-  ( G  =  <. ( x  e.  ( Base `  C
)  |->  <. ( y  e.  ( Base `  D
)  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  (
Base `  D ) ,  z  e.  ( Base `  D )  |->  ( g  e.  ( y ( Hom  `  D
) z )  |->  ( ( ( Id `  C ) `  x
) ( <. x ,  y >. ( 2nd `  F ) <.
x ,  z >.
) g ) ) ) >. ) ,  ( x  e.  ( Base `  C ) ,  y  e.  ( Base `  C
)  |->  ( g  e.  ( x ( Hom  `  C ) y ) 
|->  ( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) ) >.  ->  ( 2nd `  G )  =  ( x  e.  (
Base `  C ) ,  y  e.  ( Base `  C )  |->  ( g  e.  ( x ( Hom  `  C
) y )  |->  ( z  e.  ( Base `  D )  |->  ( g ( <. x ,  z
>. ( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) ) )
1811, 17syl 17 . . . 4  |-  ( ph  ->  ( 2nd `  G
)  =  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( g  e.  ( x ( Hom  `  C ) y ) 
|->  ( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) ) )
1916, 18opeq12d 4410 . . 3  |-  ( ph  -> 
<. ( 1st `  G
) ,  ( 2nd `  G ) >.  =  <. ( x  e.  ( Base `  C )  |->  <. (
y  e.  ( Base `  D )  |->  ( x ( 1st `  F
) y ) ) ,  ( y  e.  ( Base `  D
) ,  z  e.  ( Base `  D
)  |->  ( g  e.  ( y ( Hom  `  D ) z ) 
|->  ( ( ( Id
`  C ) `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. ) ,  ( x  e.  ( Base `  C ) ,  y  e.  ( Base `  C
)  |->  ( g  e.  ( x ( Hom  `  C ) y ) 
|->  ( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) ) >. )
2011, 19eqtr4d 2659 . 2  |-  ( ph  ->  G  =  <. ( 1st `  G ) ,  ( 2nd `  G
) >. )
21 curfcl.q . . . . 5  |-  Q  =  ( D FuncCat  E )
2221fucbas 16620 . . . 4  |-  ( D 
Func  E )  =  (
Base `  Q )
23 eqid 2622 . . . . 5  |-  ( D Nat 
E )  =  ( D Nat  E )
2421, 23fuchom 16621 . . . 4  |-  ( D Nat 
E )  =  ( Hom  `  Q )
25 eqid 2622 . . . 4  |-  ( Id
`  Q )  =  ( Id `  Q
)
26 eqid 2622 . . . 4  |-  (comp `  C )  =  (comp `  C )
27 eqid 2622 . . . 4  |-  (comp `  Q )  =  (comp `  Q )
28 funcrcl 16523 . . . . . . 7  |-  ( F  e.  ( ( C  X.c  D )  Func  E
)  ->  ( ( C  X.c  D )  e.  Cat  /\  E  e.  Cat )
)
295, 28syl 17 . . . . . 6  |-  ( ph  ->  ( ( C  X.c  D
)  e.  Cat  /\  E  e.  Cat )
)
3029simprd 479 . . . . 5  |-  ( ph  ->  E  e.  Cat )
3121, 4, 30fuccat 16630 . . . 4  |-  ( ph  ->  Q  e.  Cat )
32 opex 4932 . . . . . 6  |-  <. (
y  e.  ( Base `  D )  |->  ( x ( 1st `  F
) y ) ) ,  ( y  e.  ( Base `  D
) ,  z  e.  ( Base `  D
)  |->  ( g  e.  ( y ( Hom  `  D ) z ) 
|->  ( ( ( Id
`  C ) `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >.  e.  _V
3332a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  <. ( y  e.  ( Base `  D
)  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  (
Base `  D ) ,  z  e.  ( Base `  D )  |->  ( g  e.  ( y ( Hom  `  D
) z )  |->  ( ( ( Id `  C ) `  x
) ( <. x ,  y >. ( 2nd `  F ) <.
x ,  z >.
) g ) ) ) >.  e.  _V )
343adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  C  e.  Cat )
354adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  D  e.  Cat )
365adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  F  e.  ( ( C  X.c  D
)  Func  E )
)
37 simpr 477 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  x  e.  ( Base `  C )
)
38 eqid 2622 . . . . . 6  |-  ( ( 1st `  G ) `
 x )  =  ( ( 1st `  G
) `  x )
391, 2, 34, 35, 36, 6, 37, 38curf1cl 16868 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  G ) `  x )  e.  ( D  Func  E )
)
4033, 16, 39fmpt2d 6393 . . . 4  |-  ( ph  ->  ( 1st `  G
) : ( Base `  C ) --> ( D 
Func  E ) )
41 eqid 2622 . . . . . 6  |-  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( g  e.  ( x ( Hom  `  C ) y ) 
|->  ( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) )  =  ( x  e.  ( Base `  C ) ,  y  e.  ( Base `  C
)  |->  ( g  e.  ( x ( Hom  `  C ) y ) 
|->  ( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) )
42 ovex 6678 . . . . . . 7  |-  ( x ( Hom  `  C
) y )  e. 
_V
4342mptex 6486 . . . . . 6  |-  ( g  e.  ( x ( Hom  `  C )
y )  |->  ( z  e.  ( Base `  D
)  |->  ( g (
<. x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) )  e.  _V
4441, 43fnmpt2i 7239 . . . . 5  |-  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( g  e.  ( x ( Hom  `  C ) y ) 
|->  ( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) )  Fn  (
( Base `  C )  X.  ( Base `  C
) )
4518fneq1d 5981 . . . . 5  |-  ( ph  ->  ( ( 2nd `  G
)  Fn  ( (
Base `  C )  X.  ( Base `  C
) )  <->  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( g  e.  ( x ( Hom  `  C ) y ) 
|->  ( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) )  Fn  (
( Base `  C )  X.  ( Base `  C
) ) ) )
4644, 45mpbiri 248 . . . 4  |-  ( ph  ->  ( 2nd `  G
)  Fn  ( (
Base `  C )  X.  ( Base `  C
) ) )
47 fvex 6201 . . . . . . 7  |-  ( Base `  D )  e.  _V
4847mptex 6486 . . . . . 6  |-  ( z  e.  ( Base `  D
)  |->  ( g (
<. x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) )  e.  _V
4948a1i 11 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  g  e.  ( x
( Hom  `  C ) y ) )  -> 
( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) )  e.  _V )
5018oveqd 6667 . . . . . 6  |-  ( ph  ->  ( x ( 2nd `  G ) y )  =  ( x ( x  e.  ( Base `  C ) ,  y  e.  ( Base `  C
)  |->  ( g  e.  ( x ( Hom  `  C ) y ) 
|->  ( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) ) y ) )
5141ovmpt4g 6783 . . . . . . 7  |-  ( ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  ( g  e.  ( x ( Hom  `  C ) y ) 
|->  ( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) )  e.  _V )  ->  ( x ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( g  e.  ( x ( Hom  `  C ) y ) 
|->  ( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) ) y )  =  ( g  e.  ( x ( Hom  `  C ) y ) 
|->  ( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) )
5243, 51mp3an3 1413 . . . . . 6  |-  ( ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) )  ->  (
x ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( g  e.  ( x ( Hom  `  C ) y ) 
|->  ( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) ) y )  =  ( g  e.  ( x ( Hom  `  C ) y ) 
|->  ( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) )
5350, 52sylan9eq 2676 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
x ( 2nd `  G
) y )  =  ( g  e.  ( x ( Hom  `  C
) y )  |->  ( z  e.  ( Base `  D )  |->  ( g ( <. x ,  z
>. ( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) )
543ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  g  e.  ( x
( Hom  `  C ) y ) )  ->  C  e.  Cat )
554ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  g  e.  ( x
( Hom  `  C ) y ) )  ->  D  e.  Cat )
565ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  g  e.  ( x
( Hom  `  C ) y ) )  ->  F  e.  ( ( C  X.c  D )  Func  E
) )
57 simplrl 800 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  g  e.  ( x
( Hom  `  C ) y ) )  ->  x  e.  ( Base `  C ) )
58 simplrr 801 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  g  e.  ( x
( Hom  `  C ) y ) )  -> 
y  e.  ( Base `  C ) )
59 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  g  e.  ( x
( Hom  `  C ) y ) )  -> 
g  e.  ( x ( Hom  `  C
) y ) )
60 eqid 2622 . . . . . 6  |-  ( ( x ( 2nd `  G
) y ) `  g )  =  ( ( x ( 2nd `  G ) y ) `
 g )
611, 2, 54, 55, 56, 6, 9, 10, 57, 58, 59, 60, 23curf2cl 16871 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  g  e.  ( x
( Hom  `  C ) y ) )  -> 
( ( x ( 2nd `  G ) y ) `  g
)  e.  ( ( ( 1st `  G
) `  x )
( D Nat  E ) ( ( 1st `  G
) `  y )
) )
6249, 53, 61fmpt2d 6393 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
x ( 2nd `  G
) y ) : ( x ( Hom  `  C ) y ) --> ( ( ( 1st `  G ) `  x
) ( D Nat  E
) ( ( 1st `  G ) `  y
) ) )
63 eqid 2622 . . . . . . . . . 10  |-  ( C  X.c  D )  =  ( C  X.c  D )
6463, 2, 6xpcbas 16818 . . . . . . . . 9  |-  ( (
Base `  C )  X.  ( Base `  D
) )  =  (
Base `  ( C  X.c  D ) )
65 eqid 2622 . . . . . . . . 9  |-  ( Id
`  ( C  X.c  D
) )  =  ( Id `  ( C  X.c  D ) )
66 eqid 2622 . . . . . . . . 9  |-  ( Id
`  E )  =  ( Id `  E
)
67 relfunc 16522 . . . . . . . . . . 11  |-  Rel  (
( C  X.c  D ) 
Func  E )
68 1st2ndbr 7217 . . . . . . . . . . 11  |-  ( ( Rel  ( ( C  X.c  D )  Func  E
)  /\  F  e.  ( ( C  X.c  D
)  Func  E )
)  ->  ( 1st `  F ) ( ( C  X.c  D )  Func  E
) ( 2nd `  F
) )
6967, 5, 68sylancr 695 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  F
) ( ( C  X.c  D )  Func  E
) ( 2nd `  F
) )
7069ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  C
) )  /\  y  e.  ( Base `  D
) )  ->  ( 1st `  F ) ( ( C  X.c  D ) 
Func  E ) ( 2nd `  F ) )
71 opelxpi 5148 . . . . . . . . . 10  |-  ( ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) )  ->  <. x ,  y >.  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
7271adantll 750 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  C
) )  /\  y  e.  ( Base `  D
) )  ->  <. x ,  y >.  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
7364, 65, 66, 70, 72funcid 16530 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  C
) )  /\  y  e.  ( Base `  D
) )  ->  (
( <. x ,  y
>. ( 2nd `  F
) <. x ,  y
>. ) `  ( ( Id `  ( C  X.c  D ) ) `  <. x ,  y >.
) )  =  ( ( Id `  E
) `  ( ( 1st `  F ) `  <. x ,  y >.
) ) )
743ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  C
) )  /\  y  e.  ( Base `  D
) )  ->  C  e.  Cat )
754ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  C
) )  /\  y  e.  ( Base `  D
) )  ->  D  e.  Cat )
7637adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  C
) )  /\  y  e.  ( Base `  D
) )  ->  x  e.  ( Base `  C
) )
77 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  C
) )  /\  y  e.  ( Base `  D
) )  ->  y  e.  ( Base `  D
) )
7863, 74, 75, 2, 6, 8, 10, 65, 76, 77xpcid 16829 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  C
) )  /\  y  e.  ( Base `  D
) )  ->  (
( Id `  ( C  X.c  D ) ) `  <. x ,  y >.
)  =  <. (
( Id `  C
) `  x ) ,  ( ( Id
`  D ) `  y ) >. )
7978fveq2d 6195 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  C
) )  /\  y  e.  ( Base `  D
) )  ->  (
( <. x ,  y
>. ( 2nd `  F
) <. x ,  y
>. ) `  ( ( Id `  ( C  X.c  D ) ) `  <. x ,  y >.
) )  =  ( ( <. x ,  y
>. ( 2nd `  F
) <. x ,  y
>. ) `  <. (
( Id `  C
) `  x ) ,  ( ( Id
`  D ) `  y ) >. )
)
80 df-ov 6653 . . . . . . . . 9  |-  ( ( ( Id `  C
) `  x )
( <. x ,  y
>. ( 2nd `  F
) <. x ,  y
>. ) ( ( Id
`  D ) `  y ) )  =  ( ( <. x ,  y >. ( 2nd `  F ) <.
x ,  y >.
) `  <. ( ( Id `  C ) `
 x ) ,  ( ( Id `  D ) `  y
) >. )
8179, 80syl6eqr 2674 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  C
) )  /\  y  e.  ( Base `  D
) )  ->  (
( <. x ,  y
>. ( 2nd `  F
) <. x ,  y
>. ) `  ( ( Id `  ( C  X.c  D ) ) `  <. x ,  y >.
) )  =  ( ( ( Id `  C ) `  x
) ( <. x ,  y >. ( 2nd `  F ) <.
x ,  y >.
) ( ( Id
`  D ) `  y ) ) )
825ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  C
) )  /\  y  e.  ( Base `  D
) )  ->  F  e.  ( ( C  X.c  D
)  Func  E )
)
831, 2, 74, 75, 82, 6, 76, 38, 77curf11 16866 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  C
) )  /\  y  e.  ( Base `  D
) )  ->  (
( 1st `  (
( 1st `  G
) `  x )
) `  y )  =  ( x ( 1st `  F ) y ) )
84 df-ov 6653 . . . . . . . . . 10  |-  ( x ( 1st `  F
) y )  =  ( ( 1st `  F
) `  <. x ,  y >. )
8583, 84syl6req 2673 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  C
) )  /\  y  e.  ( Base `  D
) )  ->  (
( 1st `  F
) `  <. x ,  y >. )  =  ( ( 1st `  (
( 1st `  G
) `  x )
) `  y )
)
8685fveq2d 6195 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  C
) )  /\  y  e.  ( Base `  D
) )  ->  (
( Id `  E
) `  ( ( 1st `  F ) `  <. x ,  y >.
) )  =  ( ( Id `  E
) `  ( ( 1st `  ( ( 1st `  G ) `  x
) ) `  y
) ) )
8773, 81, 863eqtr3d 2664 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( Base `  C
) )  /\  y  e.  ( Base `  D
) )  ->  (
( ( Id `  C ) `  x
) ( <. x ,  y >. ( 2nd `  F ) <.
x ,  y >.
) ( ( Id
`  D ) `  y ) )  =  ( ( Id `  E ) `  (
( 1st `  (
( 1st `  G
) `  x )
) `  y )
) )
8887mpteq2dva 4744 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( y  e.  ( Base `  D
)  |->  ( ( ( Id `  C ) `
 x ) (
<. x ,  y >.
( 2nd `  F
) <. x ,  y
>. ) ( ( Id
`  D ) `  y ) ) )  =  ( y  e.  ( Base `  D
)  |->  ( ( Id
`  E ) `  ( ( 1st `  (
( 1st `  G
) `  x )
) `  y )
) ) )
8930adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  E  e.  Cat )
90 eqid 2622 . . . . . . . . . 10  |-  ( Base `  E )  =  (
Base `  E )
9190, 66cidfn 16340 . . . . . . . . 9  |-  ( E  e.  Cat  ->  ( Id `  E )  Fn  ( Base `  E
) )
9289, 91syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( Id `  E )  Fn  ( Base `  E ) )
93 dffn2 6047 . . . . . . . 8  |-  ( ( Id `  E )  Fn  ( Base `  E
)  <->  ( Id `  E ) : (
Base `  E ) --> _V )
9492, 93sylib 208 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( Id `  E ) : (
Base `  E ) --> _V )
95 relfunc 16522 . . . . . . . . 9  |-  Rel  ( D  Func  E )
96 1st2ndbr 7217 . . . . . . . . 9  |-  ( ( Rel  ( D  Func  E )  /\  ( ( 1st `  G ) `
 x )  e.  ( D  Func  E
) )  ->  ( 1st `  ( ( 1st `  G ) `  x
) ) ( D 
Func  E ) ( 2nd `  ( ( 1st `  G
) `  x )
) )
9795, 39, 96sylancr 695 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( 1st `  ( ( 1st `  G
) `  x )
) ( D  Func  E ) ( 2nd `  (
( 1st `  G
) `  x )
) )
986, 90, 97funcf1 16526 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( 1st `  ( ( 1st `  G
) `  x )
) : ( Base `  D ) --> ( Base `  E ) )
99 fcompt 6400 . . . . . . 7  |-  ( ( ( Id `  E
) : ( Base `  E ) --> _V  /\  ( 1st `  ( ( 1st `  G ) `
 x ) ) : ( Base `  D
) --> ( Base `  E
) )  ->  (
( Id `  E
)  o.  ( 1st `  ( ( 1st `  G
) `  x )
) )  =  ( y  e.  ( Base `  D )  |->  ( ( Id `  E ) `
 ( ( 1st `  ( ( 1st `  G
) `  x )
) `  y )
) ) )
10094, 98, 99syl2anc 693 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( Id `  E )  o.  ( 1st `  (
( 1st `  G
) `  x )
) )  =  ( y  e.  ( Base `  D )  |->  ( ( Id `  E ) `
 ( ( 1st `  ( ( 1st `  G
) `  x )
) `  y )
) ) )
10188, 100eqtr4d 2659 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( y  e.  ( Base `  D
)  |->  ( ( ( Id `  C ) `
 x ) (
<. x ,  y >.
( 2nd `  F
) <. x ,  y
>. ) ( ( Id
`  D ) `  y ) ) )  =  ( ( Id
`  E )  o.  ( 1st `  (
( 1st `  G
) `  x )
) ) )
1022, 9, 8, 34, 37catidcl 16343 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( Id `  C ) `  x )  e.  ( x ( Hom  `  C
) x ) )
103 eqid 2622 . . . . . 6  |-  ( ( x ( 2nd `  G
) x ) `  ( ( Id `  C ) `  x
) )  =  ( ( x ( 2nd `  G ) x ) `
 ( ( Id
`  C ) `  x ) )
1041, 2, 34, 35, 36, 6, 9, 10, 37, 37, 102, 103curf2 16869 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( (
x ( 2nd `  G
) x ) `  ( ( Id `  C ) `  x
) )  =  ( y  e.  ( Base `  D )  |->  ( ( ( Id `  C
) `  x )
( <. x ,  y
>. ( 2nd `  F
) <. x ,  y
>. ) ( ( Id
`  D ) `  y ) ) ) )
10521, 25, 66, 39fucid 16631 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( Id `  Q ) `  ( ( 1st `  G
) `  x )
)  =  ( ( Id `  E )  o.  ( 1st `  (
( 1st `  G
) `  x )
) ) )
106101, 104, 1053eqtr4d 2666 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( (
x ( 2nd `  G
) x ) `  ( ( Id `  C ) `  x
) )  =  ( ( Id `  Q
) `  ( ( 1st `  G ) `  x ) ) )
10733ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) )  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  ->  C  e.  Cat )
108107adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  C  e.  Cat )
10943ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) )  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  ->  D  e.  Cat )
110109adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  D  e.  Cat )
11153ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) )  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  ->  F  e.  ( ( C  X.c  D
)  Func  E )
)
112111adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  F  e.  ( ( C  X.c  D
)  Func  E )
)
113 simp21 1094 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) )  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  ->  x  e.  ( Base `  C )
)
114113adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  x  e.  ( Base `  C
) )
115 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  w  e.  ( Base `  D
) )
1161, 2, 108, 110, 112, 6, 114, 38, 115curf11 16866 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  (
( 1st `  (
( 1st `  G
) `  x )
) `  w )  =  ( x ( 1st `  F ) w ) )
117 df-ov 6653 . . . . . . . . . . 11  |-  ( x ( 1st `  F
) w )  =  ( ( 1st `  F
) `  <. x ,  w >. )
118116, 117syl6eq 2672 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  (
( 1st `  (
( 1st `  G
) `  x )
) `  w )  =  ( ( 1st `  F ) `  <. x ,  w >. )
)
119 simp22 1095 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) )  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  ->  y  e.  ( Base `  C )
)
120119adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  y  e.  ( Base `  C
) )
121 eqid 2622 . . . . . . . . . . . 12  |-  ( ( 1st `  G ) `
 y )  =  ( ( 1st `  G
) `  y )
1221, 2, 108, 110, 112, 6, 120, 121, 115curf11 16866 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  (
( 1st `  (
( 1st `  G
) `  y )
) `  w )  =  ( y ( 1st `  F ) w ) )
123 df-ov 6653 . . . . . . . . . . 11  |-  ( y ( 1st `  F
) w )  =  ( ( 1st `  F
) `  <. y ,  w >. )
124122, 123syl6eq 2672 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  (
( 1st `  (
( 1st `  G
) `  y )
) `  w )  =  ( ( 1st `  F ) `  <. y ,  w >. )
)
125118, 124opeq12d 4410 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  <. (
( 1st `  (
( 1st `  G
) `  x )
) `  w ) ,  ( ( 1st `  ( ( 1st `  G
) `  y )
) `  w ) >.  =  <. ( ( 1st `  F ) `  <. x ,  w >. ) ,  ( ( 1st `  F ) `  <. y ,  w >. ) >. )
126 simp23 1096 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) )  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  ->  z  e.  ( Base `  C )
)
127126adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  z  e.  ( Base `  C
) )
128 eqid 2622 . . . . . . . . . . 11  |-  ( ( 1st `  G ) `
 z )  =  ( ( 1st `  G
) `  z )
1291, 2, 108, 110, 112, 6, 127, 128, 115curf11 16866 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  (
( 1st `  (
( 1st `  G
) `  z )
) `  w )  =  ( z ( 1st `  F ) w ) )
130 df-ov 6653 . . . . . . . . . 10  |-  ( z ( 1st `  F
) w )  =  ( ( 1st `  F
) `  <. z ,  w >. )
131129, 130syl6eq 2672 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  (
( 1st `  (
( 1st `  G
) `  z )
) `  w )  =  ( ( 1st `  F ) `  <. z ,  w >. )
)
132125, 131oveq12d 6668 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  ( <. ( ( 1st `  (
( 1st `  G
) `  x )
) `  w ) ,  ( ( 1st `  ( ( 1st `  G
) `  y )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  z )
) `  w )
)  =  ( <.
( ( 1st `  F
) `  <. x ,  w >. ) ,  ( ( 1st `  F
) `  <. y ,  w >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. z ,  w >. ) ) )
133 simp3r 1090 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) )  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  ->  g  e.  ( y ( Hom  `  C ) z ) )
134133adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  g  e.  ( y ( Hom  `  C ) z ) )
135 eqid 2622 . . . . . . . . . 10  |-  ( ( y ( 2nd `  G
) z ) `  g )  =  ( ( y ( 2nd `  G ) z ) `
 g )
1361, 2, 108, 110, 112, 6, 9, 10, 120, 127, 134, 135, 115curf2val 16870 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  (
( ( y ( 2nd `  G ) z ) `  g
) `  w )  =  ( g (
<. y ,  w >. ( 2nd `  F )
<. z ,  w >. ) ( ( Id `  D ) `  w
) ) )
137 df-ov 6653 . . . . . . . . 9  |-  ( g ( <. y ,  w >. ( 2nd `  F
) <. z ,  w >. ) ( ( Id
`  D ) `  w ) )  =  ( ( <. y ,  w >. ( 2nd `  F
) <. z ,  w >. ) `  <. g ,  ( ( Id
`  D ) `  w ) >. )
138136, 137syl6eq 2672 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  (
( ( y ( 2nd `  G ) z ) `  g
) `  w )  =  ( ( <.
y ,  w >. ( 2nd `  F )
<. z ,  w >. ) `
 <. g ,  ( ( Id `  D
) `  w ) >. ) )
139 simp3l 1089 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) )  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  ->  f  e.  ( x ( Hom  `  C ) y ) )
140139adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  f  e.  ( x ( Hom  `  C ) y ) )
141 eqid 2622 . . . . . . . . . 10  |-  ( ( x ( 2nd `  G
) y ) `  f )  =  ( ( x ( 2nd `  G ) y ) `
 f )
1421, 2, 108, 110, 112, 6, 9, 10, 114, 120, 140, 141, 115curf2val 16870 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  (
( ( x ( 2nd `  G ) y ) `  f
) `  w )  =  ( f (
<. x ,  w >. ( 2nd `  F )
<. y ,  w >. ) ( ( Id `  D ) `  w
) ) )
143 df-ov 6653 . . . . . . . . 9  |-  ( f ( <. x ,  w >. ( 2nd `  F
) <. y ,  w >. ) ( ( Id
`  D ) `  w ) )  =  ( ( <. x ,  w >. ( 2nd `  F
) <. y ,  w >. ) `  <. f ,  ( ( Id
`  D ) `  w ) >. )
144142, 143syl6eq 2672 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  (
( ( x ( 2nd `  G ) y ) `  f
) `  w )  =  ( ( <.
x ,  w >. ( 2nd `  F )
<. y ,  w >. ) `
 <. f ,  ( ( Id `  D
) `  w ) >. ) )
145132, 138, 144oveq123d 6671 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  (
( ( ( y ( 2nd `  G
) z ) `  g ) `  w
) ( <. (
( 1st `  (
( 1st `  G
) `  x )
) `  w ) ,  ( ( 1st `  ( ( 1st `  G
) `  y )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  z )
) `  w )
) ( ( ( x ( 2nd `  G
) y ) `  f ) `  w
) )  =  ( ( ( <. y ,  w >. ( 2nd `  F
) <. z ,  w >. ) `  <. g ,  ( ( Id
`  D ) `  w ) >. )
( <. ( ( 1st `  F ) `  <. x ,  w >. ) ,  ( ( 1st `  F ) `  <. y ,  w >. ) >. (comp `  E )
( ( 1st `  F
) `  <. z ,  w >. ) ) ( ( <. x ,  w >. ( 2nd `  F
) <. y ,  w >. ) `  <. f ,  ( ( Id
`  D ) `  w ) >. )
) )
146 eqid 2622 . . . . . . . 8  |-  ( Hom  `  ( C  X.c  D ) )  =  ( Hom  `  ( C  X.c  D ) )
147 eqid 2622 . . . . . . . 8  |-  (comp `  ( C  X.c  D )
)  =  (comp `  ( C  X.c  D )
)
148 eqid 2622 . . . . . . . 8  |-  (comp `  E )  =  (comp `  E )
14967, 112, 68sylancr 695 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  ( 1st `  F ) ( ( C  X.c  D ) 
Func  E ) ( 2nd `  F ) )
150 opelxpi 5148 . . . . . . . . 9  |-  ( ( x  e.  ( Base `  C )  /\  w  e.  ( Base `  D
) )  ->  <. x ,  w >.  e.  (
( Base `  C )  X.  ( Base `  D
) ) )
151113, 150sylan 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  <. x ,  w >.  e.  (
( Base `  C )  X.  ( Base `  D
) ) )
152 opelxpi 5148 . . . . . . . . 9  |-  ( ( y  e.  ( Base `  C )  /\  w  e.  ( Base `  D
) )  ->  <. y ,  w >.  e.  (
( Base `  C )  X.  ( Base `  D
) ) )
153119, 152sylan 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  <. y ,  w >.  e.  (
( Base `  C )  X.  ( Base `  D
) ) )
154 opelxpi 5148 . . . . . . . . 9  |-  ( ( z  e.  ( Base `  C )  /\  w  e.  ( Base `  D
) )  ->  <. z ,  w >.  e.  (
( Base `  C )  X.  ( Base `  D
) ) )
155126, 154sylan 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  <. z ,  w >.  e.  (
( Base `  C )  X.  ( Base `  D
) ) )
1566, 7, 10, 110, 115catidcl 16343 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  (
( Id `  D
) `  w )  e.  ( w ( Hom  `  D ) w ) )
157 opelxpi 5148 . . . . . . . . . 10  |-  ( ( f  e.  ( x ( Hom  `  C
) y )  /\  ( ( Id `  D ) `  w
)  e.  ( w ( Hom  `  D
) w ) )  ->  <. f ,  ( ( Id `  D
) `  w ) >.  e.  ( ( x ( Hom  `  C
) y )  X.  ( w ( Hom  `  D ) w ) ) )
158140, 156, 157syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  <. f ,  ( ( Id
`  D ) `  w ) >.  e.  ( ( x ( Hom  `  C ) y )  X.  ( w ( Hom  `  D )
w ) ) )
15963, 2, 6, 9, 7, 114, 115, 120, 115, 146xpchom2 16826 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  ( <. x ,  w >. ( Hom  `  ( C  X.c  D ) ) <.
y ,  w >. )  =  ( ( x ( Hom  `  C
) y )  X.  ( w ( Hom  `  D ) w ) ) )
160158, 159eleqtrrd 2704 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  <. f ,  ( ( Id
`  D ) `  w ) >.  e.  (
<. x ,  w >. ( Hom  `  ( C  X.c  D ) ) <.
y ,  w >. ) )
161 opelxpi 5148 . . . . . . . . . 10  |-  ( ( g  e.  ( y ( Hom  `  C
) z )  /\  ( ( Id `  D ) `  w
)  e.  ( w ( Hom  `  D
) w ) )  ->  <. g ,  ( ( Id `  D
) `  w ) >.  e.  ( ( y ( Hom  `  C
) z )  X.  ( w ( Hom  `  D ) w ) ) )
162134, 156, 161syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  <. g ,  ( ( Id
`  D ) `  w ) >.  e.  ( ( y ( Hom  `  C ) z )  X.  ( w ( Hom  `  D )
w ) ) )
16363, 2, 6, 9, 7, 120, 115, 127, 115, 146xpchom2 16826 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  ( <. y ,  w >. ( Hom  `  ( C  X.c  D ) ) <.
z ,  w >. )  =  ( ( y ( Hom  `  C
) z )  X.  ( w ( Hom  `  D ) w ) ) )
164162, 163eleqtrrd 2704 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  <. g ,  ( ( Id
`  D ) `  w ) >.  e.  (
<. y ,  w >. ( Hom  `  ( C  X.c  D ) ) <.
z ,  w >. ) )
16564, 146, 147, 148, 149, 151, 153, 155, 160, 164funcco 16531 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  (
( <. x ,  w >. ( 2nd `  F
) <. z ,  w >. ) `  ( <.
g ,  ( ( Id `  D ) `
 w ) >.
( <. <. x ,  w >. ,  <. y ,  w >. >. (comp `  ( C  X.c  D ) ) <.
z ,  w >. )
<. f ,  ( ( Id `  D ) `
 w ) >.
) )  =  ( ( ( <. y ,  w >. ( 2nd `  F
) <. z ,  w >. ) `  <. g ,  ( ( Id
`  D ) `  w ) >. )
( <. ( ( 1st `  F ) `  <. x ,  w >. ) ,  ( ( 1st `  F ) `  <. y ,  w >. ) >. (comp `  E )
( ( 1st `  F
) `  <. z ,  w >. ) ) ( ( <. x ,  w >. ( 2nd `  F
) <. y ,  w >. ) `  <. f ,  ( ( Id
`  D ) `  w ) >. )
) )
166 eqid 2622 . . . . . . . . . . 11  |-  (comp `  D )  =  (comp `  D )
16763, 2, 6, 9, 7, 114, 115, 120, 115, 26, 166, 147, 127, 115, 140, 156, 134, 156xpcco2 16827 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  ( <. g ,  ( ( Id `  D ) `
 w ) >.
( <. <. x ,  w >. ,  <. y ,  w >. >. (comp `  ( C  X.c  D ) ) <.
z ,  w >. )
<. f ,  ( ( Id `  D ) `
 w ) >.
)  =  <. (
g ( <. x ,  y >. (comp `  C ) z ) f ) ,  ( ( ( Id `  D ) `  w
) ( <. w ,  w >. (comp `  D
) w ) ( ( Id `  D
) `  w )
) >. )
1686, 7, 10, 110, 115, 166, 115, 156catlid 16344 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  (
( ( Id `  D ) `  w
) ( <. w ,  w >. (comp `  D
) w ) ( ( Id `  D
) `  w )
)  =  ( ( Id `  D ) `
 w ) )
169168opeq2d 4409 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  <. (
g ( <. x ,  y >. (comp `  C ) z ) f ) ,  ( ( ( Id `  D ) `  w
) ( <. w ,  w >. (comp `  D
) w ) ( ( Id `  D
) `  w )
) >.  =  <. (
g ( <. x ,  y >. (comp `  C ) z ) f ) ,  ( ( Id `  D
) `  w ) >. )
170167, 169eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  ( <. g ,  ( ( Id `  D ) `
 w ) >.
( <. <. x ,  w >. ,  <. y ,  w >. >. (comp `  ( C  X.c  D ) ) <.
z ,  w >. )
<. f ,  ( ( Id `  D ) `
 w ) >.
)  =  <. (
g ( <. x ,  y >. (comp `  C ) z ) f ) ,  ( ( Id `  D
) `  w ) >. )
171170fveq2d 6195 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  (
( <. x ,  w >. ( 2nd `  F
) <. z ,  w >. ) `  ( <.
g ,  ( ( Id `  D ) `
 w ) >.
( <. <. x ,  w >. ,  <. y ,  w >. >. (comp `  ( C  X.c  D ) ) <.
z ,  w >. )
<. f ,  ( ( Id `  D ) `
 w ) >.
) )  =  ( ( <. x ,  w >. ( 2nd `  F
) <. z ,  w >. ) `  <. (
g ( <. x ,  y >. (comp `  C ) z ) f ) ,  ( ( Id `  D
) `  w ) >. ) )
172 df-ov 6653 . . . . . . . 8  |-  ( ( g ( <. x ,  y >. (comp `  C ) z ) f ) ( <.
x ,  w >. ( 2nd `  F )
<. z ,  w >. ) ( ( Id `  D ) `  w
) )  =  ( ( <. x ,  w >. ( 2nd `  F
) <. z ,  w >. ) `  <. (
g ( <. x ,  y >. (comp `  C ) z ) f ) ,  ( ( Id `  D
) `  w ) >. )
173171, 172syl6eqr 2674 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  (
( <. x ,  w >. ( 2nd `  F
) <. z ,  w >. ) `  ( <.
g ,  ( ( Id `  D ) `
 w ) >.
( <. <. x ,  w >. ,  <. y ,  w >. >. (comp `  ( C  X.c  D ) ) <.
z ,  w >. )
<. f ,  ( ( Id `  D ) `
 w ) >.
) )  =  ( ( g ( <.
x ,  y >.
(comp `  C )
z ) f ) ( <. x ,  w >. ( 2nd `  F
) <. z ,  w >. ) ( ( Id
`  D ) `  w ) ) )
174145, 165, 1733eqtr2rd 2663 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  z  e.  ( Base `  C )
)  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  /\  w  e.  ( Base `  D
) )  ->  (
( g ( <.
x ,  y >.
(comp `  C )
z ) f ) ( <. x ,  w >. ( 2nd `  F
) <. z ,  w >. ) ( ( Id
`  D ) `  w ) )  =  ( ( ( ( y ( 2nd `  G
) z ) `  g ) `  w
) ( <. (
( 1st `  (
( 1st `  G
) `  x )
) `  w ) ,  ( ( 1st `  ( ( 1st `  G
) `  y )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  z )
) `  w )
) ( ( ( x ( 2nd `  G
) y ) `  f ) `  w
) ) )
175174mpteq2dva 4744 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) )  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  ->  ( w  e.  ( Base `  D
)  |->  ( ( g ( <. x ,  y
>. (comp `  C )
z ) f ) ( <. x ,  w >. ( 2nd `  F
) <. z ,  w >. ) ( ( Id
`  D ) `  w ) ) )  =  ( w  e.  ( Base `  D
)  |->  ( ( ( ( y ( 2nd `  G ) z ) `
 g ) `  w ) ( <.
( ( 1st `  (
( 1st `  G
) `  x )
) `  w ) ,  ( ( 1st `  ( ( 1st `  G
) `  y )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  z )
) `  w )
) ( ( ( x ( 2nd `  G
) y ) `  f ) `  w
) ) ) )
1762, 9, 26, 107, 113, 119, 126, 139, 133catcocl 16346 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) )  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  ->  ( g
( <. x ,  y
>. (comp `  C )
z ) f )  e.  ( x ( Hom  `  C )
z ) )
177 eqid 2622 . . . . . 6  |-  ( ( x ( 2nd `  G
) z ) `  ( g ( <.
x ,  y >.
(comp `  C )
z ) f ) )  =  ( ( x ( 2nd `  G
) z ) `  ( g ( <.
x ,  y >.
(comp `  C )
z ) f ) )
1781, 2, 107, 109, 111, 6, 9, 10, 113, 126, 176, 177curf2 16869 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) )  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  ->  ( (
x ( 2nd `  G
) z ) `  ( g ( <.
x ,  y >.
(comp `  C )
z ) f ) )  =  ( w  e.  ( Base `  D
)  |->  ( ( g ( <. x ,  y
>. (comp `  C )
z ) f ) ( <. x ,  w >. ( 2nd `  F
) <. z ,  w >. ) ( ( Id
`  D ) `  w ) ) ) )
1791, 2, 107, 109, 111, 6, 9, 10, 113, 119, 139, 141, 23curf2cl 16871 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) )  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  ->  ( (
x ( 2nd `  G
) y ) `  f )  e.  ( ( ( 1st `  G
) `  x )
( D Nat  E ) ( ( 1st `  G
) `  y )
) )
1801, 2, 107, 109, 111, 6, 9, 10, 119, 126, 133, 135, 23curf2cl 16871 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) )  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  ->  ( (
y ( 2nd `  G
) z ) `  g )  e.  ( ( ( 1st `  G
) `  y )
( D Nat  E ) ( ( 1st `  G
) `  z )
) )
18121, 23, 6, 148, 27, 179, 180fucco 16622 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) )  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  ->  ( (
( y ( 2nd `  G ) z ) `
 g ) (
<. ( ( 1st `  G
) `  x ) ,  ( ( 1st `  G ) `  y
) >. (comp `  Q
) ( ( 1st `  G ) `  z
) ) ( ( x ( 2nd `  G
) y ) `  f ) )  =  ( w  e.  (
Base `  D )  |->  ( ( ( ( y ( 2nd `  G
) z ) `  g ) `  w
) ( <. (
( 1st `  (
( 1st `  G
) `  x )
) `  w ) ,  ( ( 1st `  ( ( 1st `  G
) `  y )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  z )
) `  w )
) ( ( ( x ( 2nd `  G
) y ) `  f ) `  w
) ) ) )
182175, 178, 1813eqtr4d 2666 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) )  /\  ( f  e.  ( x ( Hom  `  C ) y )  /\  g  e.  ( y ( Hom  `  C
) z ) ) )  ->  ( (
x ( 2nd `  G
) z ) `  ( g ( <.
x ,  y >.
(comp `  C )
z ) f ) )  =  ( ( ( y ( 2nd `  G ) z ) `
 g ) (
<. ( ( 1st `  G
) `  x ) ,  ( ( 1st `  G ) `  y
) >. (comp `  Q
) ( ( 1st `  G ) `  z
) ) ( ( x ( 2nd `  G
) y ) `  f ) ) )
1832, 22, 9, 24, 8, 25, 26, 27, 3, 31, 40, 46, 62, 106, 182isfuncd 16525 . . 3  |-  ( ph  ->  ( 1st `  G
) ( C  Func  Q ) ( 2nd `  G
) )
184 df-br 4654 . . 3  |-  ( ( 1st `  G ) ( C  Func  Q
) ( 2nd `  G
)  <->  <. ( 1st `  G
) ,  ( 2nd `  G ) >.  e.  ( C  Func  Q )
)
185183, 184sylib 208 . 2  |-  ( ph  -> 
<. ( 1st `  G
) ,  ( 2nd `  G ) >.  e.  ( C  Func  Q )
)
18620, 185eqeltrd 2701 1  |-  ( ph  ->  G  e.  ( C 
Func  Q ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112    o. ccom 5118   Rel wrel 5119    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326    Func cfunc 16514   Nat cnat 16601   FuncCat cfuc 16602    X.c cxpc 16808   curryF ccurf 16850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-func 16518  df-nat 16603  df-fuc 16604  df-xpc 16812  df-curf 16854
This theorem is referenced by:  uncfcurf  16879  diagcl  16881  curf2ndf  16887  yoncl  16902
  Copyright terms: Public domain W3C validator