Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climuz Structured version   Visualization version   Unicode version

Theorem climuz 39976
Description: Express the predicate: The limit of complex number sequence  F is  A, or  F converges to  A. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climuz.k  |-  F/_ k F
climuz.m  |-  ( ph  ->  M  e.  ZZ )
climuz.z  |-  Z  =  ( ZZ>= `  M )
climuz.f  |-  ( ph  ->  F : Z --> CC )
Assertion
Ref Expression
climuz  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  x ) ) )
Distinct variable groups:    A, j,
k, x    j, F, x    j, Z, x
Allowed substitution hints:    ph( x, j, k)    F( k)    M( x, j, k)    Z( k)

Proof of Theorem climuz
Dummy variables  i 
l  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climuz.m . . 3  |-  ( ph  ->  M  e.  ZZ )
2 climuz.z . . 3  |-  Z  =  ( ZZ>= `  M )
3 climuz.f . . 3  |-  ( ph  ->  F : Z --> CC )
41, 2, 3climuzlem 39975 . 2  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. y  e.  RR+  E. i  e.  Z  A. l  e.  ( ZZ>= `  i )
( abs `  (
( F `  l
)  -  A ) )  <  y ) ) )
5 breq2 4657 . . . . . . . 8  |-  ( y  =  x  ->  (
( abs `  (
( F `  l
)  -  A ) )  <  y  <->  ( abs `  ( ( F `  l )  -  A
) )  <  x
) )
65ralbidv 2986 . . . . . . 7  |-  ( y  =  x  ->  ( A. l  e.  ( ZZ>=
`  i ) ( abs `  ( ( F `  l )  -  A ) )  <  y  <->  A. l  e.  ( ZZ>= `  i )
( abs `  (
( F `  l
)  -  A ) )  <  x ) )
76rexbidv 3052 . . . . . 6  |-  ( y  =  x  ->  ( E. i  e.  Z  A. l  e.  ( ZZ>=
`  i ) ( abs `  ( ( F `  l )  -  A ) )  <  y  <->  E. i  e.  Z  A. l  e.  ( ZZ>= `  i )
( abs `  (
( F `  l
)  -  A ) )  <  x ) )
8 fveq2 6191 . . . . . . . . . 10  |-  ( i  =  j  ->  ( ZZ>=
`  i )  =  ( ZZ>= `  j )
)
98raleqdv 3144 . . . . . . . . 9  |-  ( i  =  j  ->  ( A. l  e.  ( ZZ>=
`  i ) ( abs `  ( ( F `  l )  -  A ) )  <  x  <->  A. l  e.  ( ZZ>= `  j )
( abs `  (
( F `  l
)  -  A ) )  <  x ) )
10 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ k abs
11 climuz.k . . . . . . . . . . . . . . 15  |-  F/_ k F
12 nfcv 2764 . . . . . . . . . . . . . . 15  |-  F/_ k
l
1311, 12nffv 6198 . . . . . . . . . . . . . 14  |-  F/_ k
( F `  l
)
14 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ k  -
15 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ k A
1613, 14, 15nfov 6676 . . . . . . . . . . . . 13  |-  F/_ k
( ( F `  l )  -  A
)
1710, 16nffv 6198 . . . . . . . . . . . 12  |-  F/_ k
( abs `  (
( F `  l
)  -  A ) )
18 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ k  <
19 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ k
x
2017, 18, 19nfbr 4699 . . . . . . . . . . 11  |-  F/ k ( abs `  (
( F `  l
)  -  A ) )  <  x
21 nfv 1843 . . . . . . . . . . 11  |-  F/ l ( abs `  (
( F `  k
)  -  A ) )  <  x
22 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( l  =  k  ->  ( F `  l )  =  ( F `  k ) )
2322oveq1d 6665 . . . . . . . . . . . . 13  |-  ( l  =  k  ->  (
( F `  l
)  -  A )  =  ( ( F `
 k )  -  A ) )
2423fveq2d 6195 . . . . . . . . . . . 12  |-  ( l  =  k  ->  ( abs `  ( ( F `
 l )  -  A ) )  =  ( abs `  (
( F `  k
)  -  A ) ) )
2524breq1d 4663 . . . . . . . . . . 11  |-  ( l  =  k  ->  (
( abs `  (
( F `  l
)  -  A ) )  <  x  <->  ( abs `  ( ( F `  k )  -  A
) )  <  x
) )
2620, 21, 25cbvral 3167 . . . . . . . . . 10  |-  ( A. l  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  l )  -  A
) )  <  x  <->  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  A
) )  <  x
)
2726a1i 11 . . . . . . . . 9  |-  ( i  =  j  ->  ( A. l  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  l )  -  A ) )  <  x  <->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  x ) )
289, 27bitrd 268 . . . . . . . 8  |-  ( i  =  j  ->  ( A. l  e.  ( ZZ>=
`  i ) ( abs `  ( ( F `  l )  -  A ) )  <  x  <->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  x ) )
2928cbvrexv 3172 . . . . . . 7  |-  ( E. i  e.  Z  A. l  e.  ( ZZ>= `  i ) ( abs `  ( ( F `  l )  -  A
) )  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  A
) )  <  x
)
3029a1i 11 . . . . . 6  |-  ( y  =  x  ->  ( E. i  e.  Z  A. l  e.  ( ZZ>=
`  i ) ( abs `  ( ( F `  l )  -  A ) )  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  x ) )
317, 30bitrd 268 . . . . 5  |-  ( y  =  x  ->  ( E. i  e.  Z  A. l  e.  ( ZZ>=
`  i ) ( abs `  ( ( F `  l )  -  A ) )  <  y  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  x ) )
3231cbvralv 3171 . . . 4  |-  ( A. y  e.  RR+  E. i  e.  Z  A. l  e.  ( ZZ>= `  i )
( abs `  (
( F `  l
)  -  A ) )  <  y  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  x )
3332anbi2i 730 . . 3  |-  ( ( A  e.  CC  /\  A. y  e.  RR+  E. i  e.  Z  A. l  e.  ( ZZ>= `  i )
( abs `  (
( F `  l
)  -  A ) )  <  y )  <-> 
( A  e.  CC  /\ 
A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  A
) )  <  x
) )
3433a1i 11 . 2  |-  ( ph  ->  ( ( A  e.  CC  /\  A. y  e.  RR+  E. i  e.  Z  A. l  e.  ( ZZ>= `  i )
( abs `  (
( F `  l
)  -  A ) )  <  y )  <-> 
( A  e.  CC  /\ 
A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  A
) )  <  x
) ) )
354, 34bitrd 268 1  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   F/_wnfc 2751   A.wral 2912   E.wrex 2913   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934    < clt 10074    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   abscabs 13974    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-clim 14219
This theorem is referenced by:  liminflimsupclim  40039  climxlim2lem  40071
  Copyright terms: Public domain W3C validator