MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpflf Structured version   Visualization version   Unicode version

Theorem cnpflf 21805
Description: Continuity of a function at a point in terms of filter limits. (Contributed by Jeff Hankins, 7-Sep-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
Assertion
Ref Expression
cnpflf  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> Y  /\  A. f  e.  ( Fil `  X
) ( A  e.  ( J  fLim  f
)  ->  ( F `  A )  e.  ( ( K  fLimf  f ) `
 F ) ) ) ) )
Distinct variable groups:    A, f    f, X    f, Y    f, F    f, J    f, K

Proof of Theorem cnpflf
StepHypRef Expression
1 cnpf2 21054 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  A )
)  ->  F : X
--> Y )
213expa 1265 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  F : X
--> Y )
323adantl3 1219 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  F : X
--> Y )
4 cnpflfi 21803 . . . . . . 7  |-  ( ( A  e.  ( J 
fLim  f )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  -> 
( F `  A
)  e.  ( ( K  fLimf  f ) `  F ) )
54expcom 451 . . . . . 6  |-  ( F  e.  ( ( J  CnP  K ) `  A )  ->  ( A  e.  ( J  fLim  f )  ->  ( F `  A )  e.  ( ( K  fLimf  f ) `  F ) ) )
65ralrimivw 2967 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  A )  ->  A. f  e.  ( Fil `  X
) ( A  e.  ( J  fLim  f
)  ->  ( F `  A )  e.  ( ( K  fLimf  f ) `
 F ) ) )
76adantl 482 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A. f  e.  ( Fil `  X
) ( A  e.  ( J  fLim  f
)  ->  ( F `  A )  e.  ( ( K  fLimf  f ) `
 F ) ) )
83, 7jca 554 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F : X --> Y  /\  A. f  e.  ( Fil `  X ) ( A  e.  ( J  fLim  f )  ->  ( F `  A )  e.  ( ( K  fLimf  f ) `
 F ) ) ) )
98ex 450 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  ->  ( F : X
--> Y  /\  A. f  e.  ( Fil `  X
) ( A  e.  ( J  fLim  f
)  ->  ( F `  A )  e.  ( ( K  fLimf  f ) `
 F ) ) ) ) )
10 simpl1 1064 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  J  e.  (TopOn `  X )
)
11 simpl3 1066 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  A  e.  X )
12 neiflim 21778 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  A  e.  ( J  fLim  (
( nei `  J
) `  { A } ) ) )
1310, 11, 12syl2anc 693 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  A  e.  ( J  fLim  (
( nei `  J
) `  { A } ) ) )
1411snssd 4340 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  { A }  C_  X )
15 snnzg 4308 . . . . . . . 8  |-  ( A  e.  X  ->  { A }  =/=  (/) )
1611, 15syl 17 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  { A }  =/=  (/) )
17 neifil 21684 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  { A }  C_  X  /\  { A }  =/=  (/) )  -> 
( ( nei `  J
) `  { A } )  e.  ( Fil `  X ) )
1810, 14, 16, 17syl3anc 1326 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  (
( nei `  J
) `  { A } )  e.  ( Fil `  X ) )
19 oveq2 6658 . . . . . . . . 9  |-  ( f  =  ( ( nei `  J ) `  { A } )  ->  ( J  fLim  f )  =  ( J  fLim  (
( nei `  J
) `  { A } ) ) )
2019eleq2d 2687 . . . . . . . 8  |-  ( f  =  ( ( nei `  J ) `  { A } )  ->  ( A  e.  ( J  fLim  f )  <->  A  e.  ( J  fLim  ( ( nei `  J ) `
 { A }
) ) ) )
21 oveq2 6658 . . . . . . . . . 10  |-  ( f  =  ( ( nei `  J ) `  { A } )  ->  ( K  fLimf  f )  =  ( K  fLimf  ( ( nei `  J ) `
 { A }
) ) )
2221fveq1d 6193 . . . . . . . . 9  |-  ( f  =  ( ( nei `  J ) `  { A } )  ->  (
( K  fLimf  f ) `
 F )  =  ( ( K  fLimf  ( ( nei `  J
) `  { A } ) ) `  F ) )
2322eleq2d 2687 . . . . . . . 8  |-  ( f  =  ( ( nei `  J ) `  { A } )  ->  (
( F `  A
)  e.  ( ( K  fLimf  f ) `  F )  <->  ( F `  A )  e.  ( ( K  fLimf  ( ( nei `  J ) `
 { A }
) ) `  F
) ) )
2420, 23imbi12d 334 . . . . . . 7  |-  ( f  =  ( ( nei `  J ) `  { A } )  ->  (
( A  e.  ( J  fLim  f )  ->  ( F `  A
)  e.  ( ( K  fLimf  f ) `  F ) )  <->  ( A  e.  ( J  fLim  (
( nei `  J
) `  { A } ) )  -> 
( F `  A
)  e.  ( ( K  fLimf  ( ( nei `  J ) `  { A } ) ) `
 F ) ) ) )
2524rspcv 3305 . . . . . 6  |-  ( ( ( nei `  J
) `  { A } )  e.  ( Fil `  X )  ->  ( A. f  e.  ( Fil `  X
) ( A  e.  ( J  fLim  f
)  ->  ( F `  A )  e.  ( ( K  fLimf  f ) `
 F ) )  ->  ( A  e.  ( J  fLim  (
( nei `  J
) `  { A } ) )  -> 
( F `  A
)  e.  ( ( K  fLimf  ( ( nei `  J ) `  { A } ) ) `
 F ) ) ) )
2618, 25syl 17 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  ( A. f  e.  ( Fil `  X ) ( A  e.  ( J 
fLim  f )  -> 
( F `  A
)  e.  ( ( K  fLimf  f ) `  F ) )  -> 
( A  e.  ( J  fLim  ( ( nei `  J ) `  { A } ) )  ->  ( F `  A )  e.  ( ( K  fLimf  ( ( nei `  J ) `
 { A }
) ) `  F
) ) ) )
2713, 26mpid 44 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  ( A. f  e.  ( Fil `  X ) ( A  e.  ( J 
fLim  f )  -> 
( F `  A
)  e.  ( ( K  fLimf  f ) `  F ) )  -> 
( F `  A
)  e.  ( ( K  fLimf  ( ( nei `  J ) `  { A } ) ) `
 F ) ) )
2827imdistanda 729 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( ( F : X --> Y  /\  A. f  e.  ( Fil `  X ) ( A  e.  ( J  fLim  f )  ->  ( F `  A )  e.  ( ( K  fLimf  f ) `
 F ) ) )  ->  ( F : X --> Y  /\  ( F `  A )  e.  ( ( K  fLimf  ( ( nei `  J
) `  { A } ) ) `  F ) ) ) )
29 eqid 2622 . . . 4  |-  ( ( nei `  J ) `
 { A }
)  =  ( ( nei `  J ) `
 { A }
)
3029cnpflf2 21804 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> Y  /\  ( F `  A )  e.  ( ( K  fLimf  ( ( nei `  J ) `
 { A }
) ) `  F
) ) ) )
3128, 30sylibrd 249 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( ( F : X --> Y  /\  A. f  e.  ( Fil `  X ) ( A  e.  ( J  fLim  f )  ->  ( F `  A )  e.  ( ( K  fLimf  f ) `
 F ) ) )  ->  F  e.  ( ( J  CnP  K ) `  A ) ) )
329, 31impbid 202 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> Y  /\  A. f  e.  ( Fil `  X
) ( A  e.  ( J  fLim  f
)  ->  ( F `  A )  e.  ( ( K  fLimf  f ) `
 F ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   (/)c0 3915   {csn 4177   -->wf 5884   ` cfv 5888  (class class class)co 6650  TopOnctopon 20715   neicnei 20901    CnP ccnp 21029   Filcfil 21649    fLim cflim 21738    fLimf cflf 21739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-ntr 20824  df-nei 20902  df-cnp 21032  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744
This theorem is referenced by:  cnflf  21806  cnpfcf  21845
  Copyright terms: Public domain W3C validator