MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neifil Structured version   Visualization version   Unicode version

Theorem neifil 21684
Description: The neighborhoods of a nonempty set is a filter. Example 2 of [BourbakiTop1] p. I.36. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
neifil  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( ( nei `  J ) `
 S )  e.  ( Fil `  X
) )

Proof of Theorem neifil
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toponuni 20719 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
21adantr 481 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  X  =  U. J )
3 topontop 20718 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
43adantr 481 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  J  e.  Top )
5 simpr 477 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  S  C_  X )
65, 2sseqtrd 3641 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  S  C_ 
U. J )
7 eqid 2622 . . . . . . . . 9  |-  U. J  =  U. J
87neiuni 20926 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  U. J  =  U. ( ( nei `  J
) `  S )
)
94, 6, 8syl2anc 693 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  U. J  =  U. ( ( nei `  J ) `  S
) )
102, 9eqtrd 2656 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  X  =  U. ( ( nei `  J ) `  S
) )
11 eqimss2 3658 . . . . . 6  |-  ( X  =  U. ( ( nei `  J ) `
 S )  ->  U. ( ( nei `  J
) `  S )  C_  X )
1210, 11syl 17 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  U. (
( nei `  J
) `  S )  C_  X )
13 sspwuni 4611 . . . . 5  |-  ( ( ( nei `  J
) `  S )  C_ 
~P X  <->  U. (
( nei `  J
) `  S )  C_  X )
1412, 13sylibr 224 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  (
( nei `  J
) `  S )  C_ 
~P X )
15143adant3 1081 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( ( nei `  J ) `
 S )  C_  ~P X )
16 0nnei 20916 . . . . 5  |-  ( ( J  e.  Top  /\  S  =/=  (/) )  ->  -.  (/) 
e.  ( ( nei `  J ) `  S
) )
173, 16sylan 488 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  S  =/=  (/) )  ->  -.  (/) 
e.  ( ( nei `  J ) `  S
) )
18173adant2 1080 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  -.  (/)  e.  ( ( nei `  J
) `  S )
)
197tpnei 20925 . . . . . . 7  |-  ( J  e.  Top  ->  ( S  C_  U. J  <->  U. J  e.  ( ( nei `  J
) `  S )
) )
2019biimpa 501 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  U. J  e.  ( ( nei `  J
) `  S )
)
214, 6, 20syl2anc 693 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  U. J  e.  ( ( nei `  J
) `  S )
)
222, 21eqeltrd 2701 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  X  e.  ( ( nei `  J
) `  S )
)
23223adant3 1081 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  X  e.  ( ( nei `  J
) `  S )
)
2415, 18, 233jca 1242 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( ( ( nei `  J
) `  S )  C_ 
~P X  /\  -.  (/) 
e.  ( ( nei `  J ) `  S
)  /\  X  e.  ( ( nei `  J
) `  S )
) )
25 elpwi 4168 . . . . 5  |-  ( x  e.  ~P X  ->  x  C_  X )
264ad2antrr 762 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  J  e.  Top )
27 simprl 794 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  y  e.  ( ( nei `  J
) `  S )
)
28 simprr 796 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  y  C_  x )
29 simplr 792 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  x  C_  X
)
302ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  X  =  U. J )
3129, 30sseqtrd 3641 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  x  C_  U. J
)
327ssnei2 20920 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  y  e.  ( ( nei `  J ) `
 S ) )  /\  ( y  C_  x  /\  x  C_  U. J
) )  ->  x  e.  ( ( nei `  J
) `  S )
)
3326, 27, 28, 31, 32syl22anc 1327 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  x  e.  ( ( nei `  J
) `  S )
)
3433rexlimdvaa 3032 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X )  ->  ( E. y  e.  (
( nei `  J
) `  S )
y  C_  x  ->  x  e.  ( ( nei `  J ) `  S
) ) )
3525, 34sylan2 491 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  e.  ~P X )  -> 
( E. y  e.  ( ( nei `  J
) `  S )
y  C_  x  ->  x  e.  ( ( nei `  J ) `  S
) ) )
3635ralrimiva 2966 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  A. x  e.  ~P  X ( E. y  e.  ( ( nei `  J ) `
 S ) y 
C_  x  ->  x  e.  ( ( nei `  J
) `  S )
) )
37363adant3 1081 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  A. x  e.  ~P  X ( E. y  e.  ( ( nei `  J ) `
 S ) y 
C_  x  ->  x  e.  ( ( nei `  J
) `  S )
) )
38 innei 20929 . . . . . 6  |-  ( ( J  e.  Top  /\  x  e.  ( ( nei `  J ) `  S )  /\  y  e.  ( ( nei `  J
) `  S )
)  ->  ( x  i^i  y )  e.  ( ( nei `  J
) `  S )
)
39383expib 1268 . . . . 5  |-  ( J  e.  Top  ->  (
( x  e.  ( ( nei `  J
) `  S )  /\  y  e.  (
( nei `  J
) `  S )
)  ->  ( x  i^i  y )  e.  ( ( nei `  J
) `  S )
) )
403, 39syl 17 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( (
x  e.  ( ( nei `  J ) `
 S )  /\  y  e.  ( ( nei `  J ) `  S ) )  -> 
( x  i^i  y
)  e.  ( ( nei `  J ) `
 S ) ) )
41403ad2ant1 1082 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( ( x  e.  ( ( nei `  J ) `
 S )  /\  y  e.  ( ( nei `  J ) `  S ) )  -> 
( x  i^i  y
)  e.  ( ( nei `  J ) `
 S ) ) )
4241ralrimivv 2970 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  A. x  e.  ( ( nei `  J
) `  S ) A. y  e.  (
( nei `  J
) `  S )
( x  i^i  y
)  e.  ( ( nei `  J ) `
 S ) )
43 isfil2 21660 . 2  |-  ( ( ( nei `  J
) `  S )  e.  ( Fil `  X
)  <->  ( ( ( ( nei `  J
) `  S )  C_ 
~P X  /\  -.  (/) 
e.  ( ( nei `  J ) `  S
)  /\  X  e.  ( ( nei `  J
) `  S )
)  /\  A. x  e.  ~P  X ( E. y  e.  ( ( nei `  J ) `
 S ) y 
C_  x  ->  x  e.  ( ( nei `  J
) `  S )
)  /\  A. x  e.  ( ( nei `  J
) `  S ) A. y  e.  (
( nei `  J
) `  S )
( x  i^i  y
)  e.  ( ( nei `  J ) `
 S ) ) )
4424, 37, 42, 43syl3anbrc 1246 1  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( ( nei `  J ) `
 S )  e.  ( Fil `  X
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   ` cfv 5888   Topctop 20698  TopOnctopon 20715   neicnei 20901   Filcfil 21649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-fbas 19743  df-top 20699  df-topon 20716  df-nei 20902  df-fil 21650
This theorem is referenced by:  trnei  21696  neiflim  21778  hausflim  21785  flimcf  21786  flimclslem  21788  cnpflf2  21804  cnpflf  21805  fclsfnflim  21831  neipcfilu  22100
  Copyright terms: Public domain W3C validator