MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofth Structured version   Visualization version   Unicode version

Theorem cofth 16595
Description: The composition of two faithful functors is faithful. Proposition 3.30(c) in [Adamek] p. 35. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
cofth.f  |-  ( ph  ->  F  e.  ( C Faith 
D ) )
cofth.g  |-  ( ph  ->  G  e.  ( D Faith 
E ) )
Assertion
Ref Expression
cofth  |-  ( ph  ->  ( G  o.func  F )  e.  ( C Faith  E ) )

Proof of Theorem cofth
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 16522 . . 3  |-  Rel  ( C  Func  E )
2 fthfunc 16567 . . . . 5  |-  ( C Faith 
D )  C_  ( C  Func  D )
3 cofth.f . . . . 5  |-  ( ph  ->  F  e.  ( C Faith 
D ) )
42, 3sseldi 3601 . . . 4  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
5 fthfunc 16567 . . . . 5  |-  ( D Faith 
E )  C_  ( D  Func  E )
6 cofth.g . . . . 5  |-  ( ph  ->  G  e.  ( D Faith 
E ) )
75, 6sseldi 3601 . . . 4  |-  ( ph  ->  G  e.  ( D 
Func  E ) )
84, 7cofucl 16548 . . 3  |-  ( ph  ->  ( G  o.func  F )  e.  ( C  Func  E
) )
9 1st2nd 7214 . . 3  |-  ( ( Rel  ( C  Func  E )  /\  ( G  o.func 
F )  e.  ( C  Func  E )
)  ->  ( G  o.func  F )  =  <. ( 1st `  ( G  o.func  F ) ) ,  ( 2nd `  ( G  o.func  F )
) >. )
101, 8, 9sylancr 695 . 2  |-  ( ph  ->  ( G  o.func  F )  =  <. ( 1st `  ( G  o.func 
F ) ) ,  ( 2nd `  ( G  o.func 
F ) ) >.
)
11 1st2ndbr 7217 . . . . 5  |-  ( ( Rel  ( C  Func  E )  /\  ( G  o.func 
F )  e.  ( C  Func  E )
)  ->  ( 1st `  ( G  o.func  F )
) ( C  Func  E ) ( 2nd `  ( G  o.func 
F ) ) )
121, 8, 11sylancr 695 . . . 4  |-  ( ph  ->  ( 1st `  ( G  o.func 
F ) ) ( C  Func  E )
( 2nd `  ( G  o.func 
F ) ) )
13 eqid 2622 . . . . . . . 8  |-  ( Base `  D )  =  (
Base `  D )
14 eqid 2622 . . . . . . . 8  |-  ( Hom  `  D )  =  ( Hom  `  D )
15 eqid 2622 . . . . . . . 8  |-  ( Hom  `  E )  =  ( Hom  `  E )
16 relfth 16569 . . . . . . . . 9  |-  Rel  ( D Faith  E )
176adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  G  e.  ( D Faith  E ) )
18 1st2ndbr 7217 . . . . . . . . 9  |-  ( ( Rel  ( D Faith  E
)  /\  G  e.  ( D Faith  E ) )  ->  ( 1st `  G
) ( D Faith  E
) ( 2nd `  G
) )
1916, 17, 18sylancr 695 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( 1st `  G ) ( D Faith  E ) ( 2nd `  G ) )
20 eqid 2622 . . . . . . . . . 10  |-  ( Base `  C )  =  (
Base `  C )
21 relfunc 16522 . . . . . . . . . . 11  |-  Rel  ( C  Func  D )
224adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  F  e.  ( C  Func  D
) )
23 1st2ndbr 7217 . . . . . . . . . . 11  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
2421, 22, 23sylancr 695 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
2520, 13, 24funcf1 16526 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( 1st `  F ) : ( Base `  C
) --> ( Base `  D
) )
26 simprl 794 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  x  e.  ( Base `  C
) )
2725, 26ffvelrnd 6360 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( 1st `  F
) `  x )  e.  ( Base `  D
) )
28 simprr 796 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  y  e.  ( Base `  C
) )
2925, 28ffvelrnd 6360 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( 1st `  F
) `  y )  e.  ( Base `  D
) )
3013, 14, 15, 19, 27, 29fthf1 16577 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) ) : ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) -1-1-> ( ( ( 1st `  G ) `
 ( ( 1st `  F ) `  x
) ) ( Hom  `  E ) ( ( 1st `  G ) `
 ( ( 1st `  F ) `  y
) ) ) )
31 eqid 2622 . . . . . . . 8  |-  ( Hom  `  C )  =  ( Hom  `  C )
32 relfth 16569 . . . . . . . . 9  |-  Rel  ( C Faith  D )
333adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  F  e.  ( C Faith  D ) )
34 1st2ndbr 7217 . . . . . . . . 9  |-  ( ( Rel  ( C Faith  D
)  /\  F  e.  ( C Faith  D ) )  ->  ( 1st `  F
) ( C Faith  D
) ( 2nd `  F
) )
3532, 33, 34sylancr 695 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( 1st `  F ) ( C Faith  D ) ( 2nd `  F ) )
3620, 31, 14, 35, 26, 28fthf1 16577 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
x ( 2nd `  F
) y ) : ( x ( Hom  `  C ) y )
-1-1-> ( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  F ) `  y
) ) )
37 f1co 6110 . . . . . . 7  |-  ( ( ( ( ( 1st `  F ) `  x
) ( 2nd `  G
) ( ( 1st `  F ) `  y
) ) : ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) -1-1-> ( ( ( 1st `  G ) `
 ( ( 1st `  F ) `  x
) ) ( Hom  `  E ) ( ( 1st `  G ) `
 ( ( 1st `  F ) `  y
) ) )  /\  ( x ( 2nd `  F ) y ) : ( x ( Hom  `  C )
y ) -1-1-> ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )  ->  (
( ( ( 1st `  F ) `  x
) ( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) : ( x ( Hom  `  C )
y ) -1-1-> ( ( ( 1st `  G
) `  ( ( 1st `  F ) `  x ) ) ( Hom  `  E )
( ( 1st `  G
) `  ( ( 1st `  F ) `  y ) ) ) )
3830, 36, 37syl2anc 693 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( ( ( 1st `  F ) `  x
) ( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) : ( x ( Hom  `  C )
y ) -1-1-> ( ( ( 1st `  G
) `  ( ( 1st `  F ) `  x ) ) ( Hom  `  E )
( ( 1st `  G
) `  ( ( 1st `  F ) `  y ) ) ) )
397adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  G  e.  ( D  Func  E
) )
4020, 22, 39, 26, 28cofu2nd 16545 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
x ( 2nd `  ( G  o.func 
F ) ) y )  =  ( ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) )
41 eqidd 2623 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
x ( Hom  `  C
) y )  =  ( x ( Hom  `  C ) y ) )
4220, 22, 39, 26cofu1 16544 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( 1st `  ( G  o.func 
F ) ) `  x )  =  ( ( 1st `  G
) `  ( ( 1st `  F ) `  x ) ) )
4320, 22, 39, 28cofu1 16544 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( 1st `  ( G  o.func 
F ) ) `  y )  =  ( ( 1st `  G
) `  ( ( 1st `  F ) `  y ) ) )
4442, 43oveq12d 6668 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( ( 1st `  ( G  o.func 
F ) ) `  x ) ( Hom  `  E ) ( ( 1st `  ( G  o.func 
F ) ) `  y ) )  =  ( ( ( 1st `  G ) `  (
( 1st `  F
) `  x )
) ( Hom  `  E
) ( ( 1st `  G ) `  (
( 1st `  F
) `  y )
) ) )
4540, 41, 44f1eq123d 6131 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( x ( 2nd `  ( G  o.func  F )
) y ) : ( x ( Hom  `  C ) y )
-1-1-> ( ( ( 1st `  ( G  o.func  F )
) `  x )
( Hom  `  E ) ( ( 1st `  ( G  o.func 
F ) ) `  y ) )  <->  ( (
( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) : ( x ( Hom  `  C )
y ) -1-1-> ( ( ( 1st `  G
) `  ( ( 1st `  F ) `  x ) ) ( Hom  `  E )
( ( 1st `  G
) `  ( ( 1st `  F ) `  y ) ) ) ) )
4638, 45mpbird 247 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
x ( 2nd `  ( G  o.func 
F ) ) y ) : ( x ( Hom  `  C
) y ) -1-1-> ( ( ( 1st `  ( G  o.func 
F ) ) `  x ) ( Hom  `  E ) ( ( 1st `  ( G  o.func 
F ) ) `  y ) ) )
4746ralrimivva 2971 . . . 4  |-  ( ph  ->  A. x  e.  (
Base `  C ) A. y  e.  ( Base `  C ) ( x ( 2nd `  ( G  o.func 
F ) ) y ) : ( x ( Hom  `  C
) y ) -1-1-> ( ( ( 1st `  ( G  o.func 
F ) ) `  x ) ( Hom  `  E ) ( ( 1st `  ( G  o.func 
F ) ) `  y ) ) )
4820, 31, 15isfth2 16575 . . . 4  |-  ( ( 1st `  ( G  o.func 
F ) ) ( C Faith  E ) ( 2nd `  ( G  o.func 
F ) )  <->  ( ( 1st `  ( G  o.func  F ) ) ( C  Func  E ) ( 2nd `  ( G  o.func 
F ) )  /\  A. x  e.  ( Base `  C ) A. y  e.  ( Base `  C
) ( x ( 2nd `  ( G  o.func 
F ) ) y ) : ( x ( Hom  `  C
) y ) -1-1-> ( ( ( 1st `  ( G  o.func 
F ) ) `  x ) ( Hom  `  E ) ( ( 1st `  ( G  o.func 
F ) ) `  y ) ) ) )
4912, 47, 48sylanbrc 698 . . 3  |-  ( ph  ->  ( 1st `  ( G  o.func 
F ) ) ( C Faith  E ) ( 2nd `  ( G  o.func 
F ) ) )
50 df-br 4654 . . 3  |-  ( ( 1st `  ( G  o.func 
F ) ) ( C Faith  E ) ( 2nd `  ( G  o.func 
F ) )  <->  <. ( 1st `  ( G  o.func  F )
) ,  ( 2nd `  ( G  o.func  F )
) >.  e.  ( C Faith 
E ) )
5149, 50sylib 208 . 2  |-  ( ph  -> 
<. ( 1st `  ( G  o.func 
F ) ) ,  ( 2nd `  ( G  o.func 
F ) ) >.  e.  ( C Faith  E ) )
5210, 51eqeltrd 2701 1  |-  ( ph  ->  ( G  o.func  F )  e.  ( C Faith  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   <.cop 4183   class class class wbr 4653    o. ccom 5118   Rel wrel 5119   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Hom chom 15952    Func cfunc 16514    o.func ccofu 16516   Faith cfth 16563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-cat 16329  df-cid 16330  df-func 16518  df-cofu 16520  df-fth 16565
This theorem is referenced by:  coffth  16596
  Copyright terms: Public domain W3C validator