MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofu2nd Structured version   Visualization version   Unicode version

Theorem cofu2nd 16545
Description: Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b  |-  B  =  ( Base `  C
)
cofuval.f  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
cofuval.g  |-  ( ph  ->  G  e.  ( D 
Func  E ) )
cofu2nd.x  |-  ( ph  ->  X  e.  B )
cofu2nd.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
cofu2nd  |-  ( ph  ->  ( X ( 2nd `  ( G  o.func  F )
) Y )  =  ( ( ( ( 1st `  F ) `
 X ) ( 2nd `  G ) ( ( 1st `  F
) `  Y )
)  o.  ( X ( 2nd `  F
) Y ) ) )

Proof of Theorem cofu2nd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cofuval.b . . . . 5  |-  B  =  ( Base `  C
)
2 cofuval.f . . . . 5  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
3 cofuval.g . . . . 5  |-  ( ph  ->  G  e.  ( D 
Func  E ) )
41, 2, 3cofuval 16542 . . . 4  |-  ( ph  ->  ( G  o.func  F )  =  <. ( ( 1st `  G )  o.  ( 1st `  F ) ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) ) >. )
54fveq2d 6195 . . 3  |-  ( ph  ->  ( 2nd `  ( G  o.func 
F ) )  =  ( 2nd `  <. ( ( 1st `  G
)  o.  ( 1st `  F ) ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F ) `
 x ) ( 2nd `  G ) ( ( 1st `  F
) `  y )
)  o.  ( x ( 2nd `  F
) y ) ) ) >. ) )
6 fvex 6201 . . . . 5  |-  ( 1st `  G )  e.  _V
7 fvex 6201 . . . . 5  |-  ( 1st `  F )  e.  _V
86, 7coex 7118 . . . 4  |-  ( ( 1st `  G )  o.  ( 1st `  F
) )  e.  _V
9 fvex 6201 . . . . . 6  |-  ( Base `  C )  e.  _V
101, 9eqeltri 2697 . . . . 5  |-  B  e. 
_V
1110, 10mpt2ex 7247 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) )  e.  _V
128, 11op2nd 7177 . . 3  |-  ( 2nd `  <. ( ( 1st `  G )  o.  ( 1st `  F ) ) ,  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F
) `  x )
( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) ) >. )  =  ( x  e.  B , 
y  e.  B  |->  ( ( ( ( 1st `  F ) `  x
) ( 2nd `  G
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) )
135, 12syl6eq 2672 . 2  |-  ( ph  ->  ( 2nd `  ( G  o.func 
F ) )  =  ( x  e.  B ,  y  e.  B  |->  ( ( ( ( 1st `  F ) `
 x ) ( 2nd `  G ) ( ( 1st `  F
) `  y )
)  o.  ( x ( 2nd `  F
) y ) ) ) )
14 simprl 794 . . . . 5  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  ->  x  =  X )
1514fveq2d 6195 . . . 4  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( ( 1st `  F
) `  x )  =  ( ( 1st `  F ) `  X
) )
16 simprr 796 . . . . 5  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
y  =  Y )
1716fveq2d 6195 . . . 4  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( ( 1st `  F
) `  y )  =  ( ( 1st `  F ) `  Y
) )
1815, 17oveq12d 6668 . . 3  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( ( ( 1st `  F ) `  x
) ( 2nd `  G
) ( ( 1st `  F ) `  y
) )  =  ( ( ( 1st `  F
) `  X )
( 2nd `  G
) ( ( 1st `  F ) `  Y
) ) )
1914, 16oveq12d 6668 . . 3  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( x ( 2nd `  F ) y )  =  ( X ( 2nd `  F ) Y ) )
2018, 19coeq12d 5286 . 2  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( ( ( ( 1st `  F ) `
 x ) ( 2nd `  G ) ( ( 1st `  F
) `  y )
)  o.  ( x ( 2nd `  F
) y ) )  =  ( ( ( ( 1st `  F
) `  X )
( 2nd `  G
) ( ( 1st `  F ) `  Y
) )  o.  ( X ( 2nd `  F
) Y ) ) )
21 cofu2nd.x . 2  |-  ( ph  ->  X  e.  B )
22 cofu2nd.y . 2  |-  ( ph  ->  Y  e.  B )
23 ovex 6678 . . . 4  |-  ( ( ( 1st `  F
) `  X )
( 2nd `  G
) ( ( 1st `  F ) `  Y
) )  e.  _V
24 ovex 6678 . . . 4  |-  ( X ( 2nd `  F
) Y )  e. 
_V
2523, 24coex 7118 . . 3  |-  ( ( ( ( 1st `  F
) `  X )
( 2nd `  G
) ( ( 1st `  F ) `  Y
) )  o.  ( X ( 2nd `  F
) Y ) )  e.  _V
2625a1i 11 . 2  |-  ( ph  ->  ( ( ( ( 1st `  F ) `
 X ) ( 2nd `  G ) ( ( 1st `  F
) `  Y )
)  o.  ( X ( 2nd `  F
) Y ) )  e.  _V )
2713, 20, 21, 22, 26ovmpt2d 6788 1  |-  ( ph  ->  ( X ( 2nd `  ( G  o.func  F )
) Y )  =  ( ( ( ( 1st `  F ) `
 X ) ( 2nd `  G ) ( ( 1st `  F
) `  Y )
)  o.  ( X ( 2nd `  F
) Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183    o. ccom 5118   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857    Func cfunc 16514    o.func ccofu 16516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-func 16518  df-cofu 16520
This theorem is referenced by:  cofu2  16546  cofucl  16548  cofuass  16549  cofull  16594  cofth  16595  catciso  16757
  Copyright terms: Public domain W3C validator