| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > curf2 | Structured version Visualization version Unicode version | ||
| Description: Value of the curry functor at a morphism. (Contributed by Mario Carneiro, 13-Jan-2017.) |
| Ref | Expression |
|---|---|
| curf2.g |
|
| curf2.a |
|
| curf2.c |
|
| curf2.d |
|
| curf2.f |
|
| curf2.b |
|
| curf2.h |
|
| curf2.i |
|
| curf2.x |
|
| curf2.y |
|
| curf2.k |
|
| curf2.l |
|
| Ref | Expression |
|---|---|
| curf2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curf2.l |
. 2
| |
| 2 | curf2.g |
. . . . 5
| |
| 3 | curf2.a |
. . . . 5
| |
| 4 | curf2.c |
. . . . 5
| |
| 5 | curf2.d |
. . . . 5
| |
| 6 | curf2.f |
. . . . 5
| |
| 7 | curf2.b |
. . . . 5
| |
| 8 | eqid 2622 |
. . . . 5
| |
| 9 | eqid 2622 |
. . . . 5
| |
| 10 | curf2.h |
. . . . 5
| |
| 11 | curf2.i |
. . . . 5
| |
| 12 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | curfval 16863 |
. . . 4
|
| 13 | fvex 6201 |
. . . . . . 7
| |
| 14 | 3, 13 | eqeltri 2697 |
. . . . . 6
|
| 15 | 14 | mptex 6486 |
. . . . 5
|
| 16 | 14, 14 | mpt2ex 7247 |
. . . . 5
|
| 17 | 15, 16 | op2ndd 7179 |
. . . 4
|
| 18 | 12, 17 | syl 17 |
. . 3
|
| 19 | curf2.x |
. . . 4
| |
| 20 | curf2.y |
. . . . 5
| |
| 21 | 20 | adantr 481 |
. . . 4
|
| 22 | ovex 6678 |
. . . . . 6
| |
| 23 | 22 | mptex 6486 |
. . . . 5
|
| 24 | 23 | a1i 11 |
. . . 4
|
| 25 | curf2.k |
. . . . . . 7
| |
| 26 | 25 | adantr 481 |
. . . . . 6
|
| 27 | simprl 794 |
. . . . . . 7
| |
| 28 | simprr 796 |
. . . . . . 7
| |
| 29 | 27, 28 | oveq12d 6668 |
. . . . . 6
|
| 30 | 26, 29 | eleqtrrd 2704 |
. . . . 5
|
| 31 | fvex 6201 |
. . . . . . . 8
| |
| 32 | 7, 31 | eqeltri 2697 |
. . . . . . 7
|
| 33 | 32 | mptex 6486 |
. . . . . 6
|
| 34 | 33 | a1i 11 |
. . . . 5
|
| 35 | simplrl 800 |
. . . . . . . . 9
| |
| 36 | 35 | opeq1d 4408 |
. . . . . . . 8
|
| 37 | simplrr 801 |
. . . . . . . . 9
| |
| 38 | 37 | opeq1d 4408 |
. . . . . . . 8
|
| 39 | 36, 38 | oveq12d 6668 |
. . . . . . 7
|
| 40 | simpr 477 |
. . . . . . 7
| |
| 41 | eqidd 2623 |
. . . . . . 7
| |
| 42 | 39, 40, 41 | oveq123d 6671 |
. . . . . 6
|
| 43 | 42 | mpteq2dv 4745 |
. . . . 5
|
| 44 | 30, 34, 43 | fvmptdv2 6298 |
. . . 4
|
| 45 | 19, 21, 24, 44 | ovmpt2dv 6793 |
. . 3
|
| 46 | 18, 45 | mpd 15 |
. 2
|
| 47 | 1, 46 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-curf 16854 |
| This theorem is referenced by: curf2val 16870 curf2cl 16871 curfcl 16872 diag2 16885 curf2ndf 16887 |
| Copyright terms: Public domain | W3C validator |