| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > curfval | Structured version Visualization version Unicode version | ||
| Description: Value of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| curfval.g |
|
| curfval.a |
|
| curfval.c |
|
| curfval.d |
|
| curfval.f |
|
| curfval.b |
|
| curfval.j |
|
| curfval.1 |
|
| curfval.h |
|
| curfval.i |
|
| Ref | Expression |
|---|---|
| curfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curfval.g |
. 2
| |
| 2 | df-curf 16854 |
. . . 4
| |
| 3 | 2 | a1i 11 |
. . 3
|
| 4 | fvexd 6203 |
. . . 4
| |
| 5 | simprl 794 |
. . . . . 6
| |
| 6 | 5 | fveq2d 6195 |
. . . . 5
|
| 7 | curfval.c |
. . . . . . 7
| |
| 8 | curfval.d |
. . . . . . 7
| |
| 9 | op1stg 7180 |
. . . . . . 7
| |
| 10 | 7, 8, 9 | syl2anc 693 |
. . . . . 6
|
| 11 | 10 | adantr 481 |
. . . . 5
|
| 12 | 6, 11 | eqtrd 2656 |
. . . 4
|
| 13 | fvexd 6203 |
. . . . 5
| |
| 14 | 5 | adantr 481 |
. . . . . . 7
|
| 15 | 14 | fveq2d 6195 |
. . . . . 6
|
| 16 | op2ndg 7181 |
. . . . . . . 8
| |
| 17 | 7, 8, 16 | syl2anc 693 |
. . . . . . 7
|
| 18 | 17 | ad2antrr 762 |
. . . . . 6
|
| 19 | 15, 18 | eqtrd 2656 |
. . . . 5
|
| 20 | simplr 792 |
. . . . . . . . 9
| |
| 21 | 20 | fveq2d 6195 |
. . . . . . . 8
|
| 22 | curfval.a |
. . . . . . . 8
| |
| 23 | 21, 22 | syl6eqr 2674 |
. . . . . . 7
|
| 24 | simpr 477 |
. . . . . . . . . . 11
| |
| 25 | 24 | fveq2d 6195 |
. . . . . . . . . 10
|
| 26 | curfval.b |
. . . . . . . . . 10
| |
| 27 | 25, 26 | syl6eqr 2674 |
. . . . . . . . 9
|
| 28 | simprr 796 |
. . . . . . . . . . . 12
| |
| 29 | 28 | ad2antrr 762 |
. . . . . . . . . . 11
|
| 30 | 29 | fveq2d 6195 |
. . . . . . . . . 10
|
| 31 | 30 | oveqd 6667 |
. . . . . . . . 9
|
| 32 | 27, 31 | mpteq12dv 4733 |
. . . . . . . 8
|
| 33 | 24 | fveq2d 6195 |
. . . . . . . . . . . 12
|
| 34 | curfval.j |
. . . . . . . . . . . 12
| |
| 35 | 33, 34 | syl6eqr 2674 |
. . . . . . . . . . 11
|
| 36 | 35 | oveqd 6667 |
. . . . . . . . . 10
|
| 37 | 29 | fveq2d 6195 |
. . . . . . . . . . . 12
|
| 38 | 37 | oveqd 6667 |
. . . . . . . . . . 11
|
| 39 | 20 | fveq2d 6195 |
. . . . . . . . . . . . 13
|
| 40 | curfval.1 |
. . . . . . . . . . . . 13
| |
| 41 | 39, 40 | syl6eqr 2674 |
. . . . . . . . . . . 12
|
| 42 | 41 | fveq1d 6193 |
. . . . . . . . . . 11
|
| 43 | eqidd 2623 |
. . . . . . . . . . 11
| |
| 44 | 38, 42, 43 | oveq123d 6671 |
. . . . . . . . . 10
|
| 45 | 36, 44 | mpteq12dv 4733 |
. . . . . . . . 9
|
| 46 | 27, 27, 45 | mpt2eq123dv 6717 |
. . . . . . . 8
|
| 47 | 32, 46 | opeq12d 4410 |
. . . . . . 7
|
| 48 | 23, 47 | mpteq12dv 4733 |
. . . . . 6
|
| 49 | 20 | fveq2d 6195 |
. . . . . . . . . 10
|
| 50 | curfval.h |
. . . . . . . . . 10
| |
| 51 | 49, 50 | syl6eqr 2674 |
. . . . . . . . 9
|
| 52 | 51 | oveqd 6667 |
. . . . . . . 8
|
| 53 | 37 | oveqd 6667 |
. . . . . . . . . 10
|
| 54 | 24 | fveq2d 6195 |
. . . . . . . . . . . 12
|
| 55 | curfval.i |
. . . . . . . . . . . 12
| |
| 56 | 54, 55 | syl6eqr 2674 |
. . . . . . . . . . 11
|
| 57 | 56 | fveq1d 6193 |
. . . . . . . . . 10
|
| 58 | 53, 43, 57 | oveq123d 6671 |
. . . . . . . . 9
|
| 59 | 27, 58 | mpteq12dv 4733 |
. . . . . . . 8
|
| 60 | 52, 59 | mpteq12dv 4733 |
. . . . . . 7
|
| 61 | 23, 23, 60 | mpt2eq123dv 6717 |
. . . . . 6
|
| 62 | 48, 61 | opeq12d 4410 |
. . . . 5
|
| 63 | 13, 19, 62 | csbied2 3561 |
. . . 4
|
| 64 | 4, 12, 63 | csbied2 3561 |
. . 3
|
| 65 | opex 4932 |
. . . 4
| |
| 66 | 65 | a1i 11 |
. . 3
|
| 67 | curfval.f |
. . . 4
| |
| 68 | elex 3212 |
. . . 4
| |
| 69 | 67, 68 | syl 17 |
. . 3
|
| 70 | opex 4932 |
. . . 4
| |
| 71 | 70 | a1i 11 |
. . 3
|
| 72 | 3, 64, 66, 69, 71 | ovmpt2d 6788 |
. 2
|
| 73 | 1, 72 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-curf 16854 |
| This theorem is referenced by: curf1fval 16864 curf2 16869 curfcl 16872 curfpropd 16873 curfuncf 16878 |
| Copyright terms: Public domain | W3C validator |