MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curfval Structured version   Visualization version   Unicode version

Theorem curfval 16863
Description: Value of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
curfval.g  |-  G  =  ( <. C ,  D >. curryF  F
)
curfval.a  |-  A  =  ( Base `  C
)
curfval.c  |-  ( ph  ->  C  e.  Cat )
curfval.d  |-  ( ph  ->  D  e.  Cat )
curfval.f  |-  ( ph  ->  F  e.  ( ( C  X.c  D )  Func  E
) )
curfval.b  |-  B  =  ( Base `  D
)
curfval.j  |-  J  =  ( Hom  `  D
)
curfval.1  |-  .1.  =  ( Id `  C )
curfval.h  |-  H  =  ( Hom  `  C
)
curfval.i  |-  I  =  ( Id `  D
)
Assertion
Ref Expression
curfval  |-  ( ph  ->  G  =  <. (
x  e.  A  |->  <.
( y  e.  B  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y J z )  |->  ( (  .1.  `  x )
( <. x ,  y
>. ( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. ) ,  ( x  e.  A , 
y  e.  A  |->  ( g  e.  ( x H y )  |->  ( z  e.  B  |->  ( g ( <. x ,  z >. ( 2nd `  F ) <.
y ,  z >.
) ( I `  z ) ) ) ) ) >. )
Distinct variable groups:    x, g,
y, z,  .1.    x, A, y    B, g, x, y, z    C, g, x, y, z    D, g, x, y, z    g, H, y, z    ph, g, x, y, z    g, E, y, z    g, J, x   
g, F, x, y, z
Allowed substitution hints:    A( z, g)    E( x)    G( x, y, z, g)    H( x)    I( x, y, z, g)    J( y, z)

Proof of Theorem curfval
Dummy variables  c 
d  e  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfval.g . 2  |-  G  =  ( <. C ,  D >. curryF  F
)
2 df-curf 16854 . . . 4  |- curryF  =  ( e  e. 
_V ,  f  e. 
_V  |->  [_ ( 1st `  e
)  /  c ]_ [_ ( 2nd `  e
)  /  d ]_ <. ( x  e.  (
Base `  c )  |-> 
<. ( y  e.  (
Base `  d )  |->  ( x ( 1st `  f ) y ) ) ,  ( y  e.  ( Base `  d
) ,  z  e.  ( Base `  d
)  |->  ( g  e.  ( y ( Hom  `  d ) z ) 
|->  ( ( ( Id
`  c ) `  x ) ( <.
x ,  y >.
( 2nd `  f
) <. x ,  z
>. ) g ) ) ) >. ) ,  ( x  e.  ( Base `  c ) ,  y  e.  ( Base `  c
)  |->  ( g  e.  ( x ( Hom  `  c ) y ) 
|->  ( z  e.  (
Base `  d )  |->  ( g ( <.
x ,  z >.
( 2nd `  f
) <. y ,  z
>. ) ( ( Id
`  d ) `  z ) ) ) ) ) >. )
32a1i 11 . . 3  |-  ( ph  -> curryF  =  ( e  e.  _V ,  f  e.  _V  |->  [_ ( 1st `  e
)  /  c ]_ [_ ( 2nd `  e
)  /  d ]_ <. ( x  e.  (
Base `  c )  |-> 
<. ( y  e.  (
Base `  d )  |->  ( x ( 1st `  f ) y ) ) ,  ( y  e.  ( Base `  d
) ,  z  e.  ( Base `  d
)  |->  ( g  e.  ( y ( Hom  `  d ) z ) 
|->  ( ( ( Id
`  c ) `  x ) ( <.
x ,  y >.
( 2nd `  f
) <. x ,  z
>. ) g ) ) ) >. ) ,  ( x  e.  ( Base `  c ) ,  y  e.  ( Base `  c
)  |->  ( g  e.  ( x ( Hom  `  c ) y ) 
|->  ( z  e.  (
Base `  d )  |->  ( g ( <.
x ,  z >.
( 2nd `  f
) <. y ,  z
>. ) ( ( Id
`  d ) `  z ) ) ) ) ) >. )
)
4 fvexd 6203 . . . 4  |-  ( (
ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  ->  ( 1st `  e )  e. 
_V )
5 simprl 794 . . . . . 6  |-  ( (
ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  ->  e  =  <. C ,  D >. )
65fveq2d 6195 . . . . 5  |-  ( (
ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  ->  ( 1st `  e )  =  ( 1st `  <. C ,  D >. )
)
7 curfval.c . . . . . . 7  |-  ( ph  ->  C  e.  Cat )
8 curfval.d . . . . . . 7  |-  ( ph  ->  D  e.  Cat )
9 op1stg 7180 . . . . . . 7  |-  ( ( C  e.  Cat  /\  D  e.  Cat )  ->  ( 1st `  <. C ,  D >. )  =  C )
107, 8, 9syl2anc 693 . . . . . 6  |-  ( ph  ->  ( 1st `  <. C ,  D >. )  =  C )
1110adantr 481 . . . . 5  |-  ( (
ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  ->  ( 1st `  <. C ,  D >. )  =  C )
126, 11eqtrd 2656 . . . 4  |-  ( (
ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  ->  ( 1st `  e )  =  C )
13 fvexd 6203 . . . . 5  |-  ( ( ( ph  /\  (
e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  ->  ( 2nd `  e
)  e.  _V )
145adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  (
e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  ->  e  =  <. C ,  D >. )
1514fveq2d 6195 . . . . . 6  |-  ( ( ( ph  /\  (
e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  ->  ( 2nd `  e
)  =  ( 2nd `  <. C ,  D >. ) )
16 op2ndg 7181 . . . . . . . 8  |-  ( ( C  e.  Cat  /\  D  e.  Cat )  ->  ( 2nd `  <. C ,  D >. )  =  D )
177, 8, 16syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( 2nd `  <. C ,  D >. )  =  D )
1817ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  ->  ( 2nd `  <. C ,  D >. )  =  D )
1915, 18eqtrd 2656 . . . . 5  |-  ( ( ( ph  /\  (
e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  ->  ( 2nd `  e
)  =  D )
20 simplr 792 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  c  =  C )
2120fveq2d 6195 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( Base `  c )  =  (
Base `  C )
)
22 curfval.a . . . . . . . 8  |-  A  =  ( Base `  C
)
2321, 22syl6eqr 2674 . . . . . . 7  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( Base `  c )  =  A )
24 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  d  =  D )
2524fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( Base `  d )  =  (
Base `  D )
)
26 curfval.b . . . . . . . . . 10  |-  B  =  ( Base `  D
)
2725, 26syl6eqr 2674 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( Base `  d )  =  B )
28 simprr 796 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  ->  f  =  F )
2928ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  f  =  F )
3029fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( 1st `  f )  =  ( 1st `  F ) )
3130oveqd 6667 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( x
( 1st `  f
) y )  =  ( x ( 1st `  F ) y ) )
3227, 31mpteq12dv 4733 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( y  e.  ( Base `  d
)  |->  ( x ( 1st `  f ) y ) )  =  ( y  e.  B  |->  ( x ( 1st `  F ) y ) ) )
3324fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( Hom  `  d )  =  ( Hom  `  D )
)
34 curfval.j . . . . . . . . . . . 12  |-  J  =  ( Hom  `  D
)
3533, 34syl6eqr 2674 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( Hom  `  d )  =  J )
3635oveqd 6667 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( y
( Hom  `  d ) z )  =  ( y J z ) )
3729fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( 2nd `  f )  =  ( 2nd `  F ) )
3837oveqd 6667 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( <. x ,  y >. ( 2nd `  f ) <.
x ,  z >.
)  =  ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) )
3920fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( Id `  c )  =  ( Id `  C ) )
40 curfval.1 . . . . . . . . . . . . 13  |-  .1.  =  ( Id `  C )
4139, 40syl6eqr 2674 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( Id `  c )  =  .1.  )
4241fveq1d 6193 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( ( Id `  c ) `  x )  =  (  .1.  `  x )
)
43 eqidd 2623 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  g  =  g )
4438, 42, 43oveq123d 6671 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( (
( Id `  c
) `  x )
( <. x ,  y
>. ( 2nd `  f
) <. x ,  z
>. ) g )  =  ( (  .1.  `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g ) )
4536, 44mpteq12dv 4733 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( g  e.  ( y ( Hom  `  d ) z ) 
|->  ( ( ( Id
`  c ) `  x ) ( <.
x ,  y >.
( 2nd `  f
) <. x ,  z
>. ) g ) )  =  ( g  e.  ( y J z )  |->  ( (  .1.  `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g ) ) )
4627, 27, 45mpt2eq123dv 6717 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( y  e.  ( Base `  d
) ,  z  e.  ( Base `  d
)  |->  ( g  e.  ( y ( Hom  `  d ) z ) 
|->  ( ( ( Id
`  c ) `  x ) ( <.
x ,  y >.
( 2nd `  f
) <. x ,  z
>. ) g ) ) )  =  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y J z )  |->  ( (  .1.  `  x )
( <. x ,  y
>. ( 2nd `  F
) <. x ,  z
>. ) g ) ) ) )
4732, 46opeq12d 4410 . . . . . . 7  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  <. ( y  e.  ( Base `  d
)  |->  ( x ( 1st `  f ) y ) ) ,  ( y  e.  (
Base `  d ) ,  z  e.  ( Base `  d )  |->  ( g  e.  ( y ( Hom  `  d
) z )  |->  ( ( ( Id `  c ) `  x
) ( <. x ,  y >. ( 2nd `  f ) <.
x ,  z >.
) g ) ) ) >.  =  <. ( y  e.  B  |->  ( x ( 1st `  F
) y ) ) ,  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y J z )  |->  ( (  .1.  `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. )
4823, 47mpteq12dv 4733 . . . . . 6  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( x  e.  ( Base `  c
)  |->  <. ( y  e.  ( Base `  d
)  |->  ( x ( 1st `  f ) y ) ) ,  ( y  e.  (
Base `  d ) ,  z  e.  ( Base `  d )  |->  ( g  e.  ( y ( Hom  `  d
) z )  |->  ( ( ( Id `  c ) `  x
) ( <. x ,  y >. ( 2nd `  f ) <.
x ,  z >.
) g ) ) ) >. )  =  ( x  e.  A  |->  <.
( y  e.  B  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y J z )  |->  ( (  .1.  `  x )
( <. x ,  y
>. ( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. ) )
4920fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( Hom  `  c )  =  ( Hom  `  C )
)
50 curfval.h . . . . . . . . . 10  |-  H  =  ( Hom  `  C
)
5149, 50syl6eqr 2674 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( Hom  `  c )  =  H )
5251oveqd 6667 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( x
( Hom  `  c ) y )  =  ( x H y ) )
5337oveqd 6667 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( <. x ,  z >. ( 2nd `  f ) <.
y ,  z >.
)  =  ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) )
5424fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( Id `  d )  =  ( Id `  D ) )
55 curfval.i . . . . . . . . . . . 12  |-  I  =  ( Id `  D
)
5654, 55syl6eqr 2674 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( Id `  d )  =  I )
5756fveq1d 6193 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( ( Id `  d ) `  z )  =  ( I `  z ) )
5853, 43, 57oveq123d 6671 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( g
( <. x ,  z
>. ( 2nd `  f
) <. y ,  z
>. ) ( ( Id
`  d ) `  z ) )  =  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( I `  z ) ) )
5927, 58mpteq12dv 4733 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( z  e.  ( Base `  d
)  |->  ( g (
<. x ,  z >.
( 2nd `  f
) <. y ,  z
>. ) ( ( Id
`  d ) `  z ) ) )  =  ( z  e.  B  |->  ( g (
<. x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( I `  z ) ) ) )
6052, 59mpteq12dv 4733 . . . . . . 7  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( g  e.  ( x ( Hom  `  c ) y ) 
|->  ( z  e.  (
Base `  d )  |->  ( g ( <.
x ,  z >.
( 2nd `  f
) <. y ,  z
>. ) ( ( Id
`  d ) `  z ) ) ) )  =  ( g  e.  ( x H y )  |->  ( z  e.  B  |->  ( g ( <. x ,  z
>. ( 2nd `  F
) <. y ,  z
>. ) ( I `  z ) ) ) ) )
6123, 23, 60mpt2eq123dv 6717 . . . . . 6  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  ( x  e.  ( Base `  c
) ,  y  e.  ( Base `  c
)  |->  ( g  e.  ( x ( Hom  `  c ) y ) 
|->  ( z  e.  (
Base `  d )  |->  ( g ( <.
x ,  z >.
( 2nd `  f
) <. y ,  z
>. ) ( ( Id
`  d ) `  z ) ) ) ) )  =  ( x  e.  A , 
y  e.  A  |->  ( g  e.  ( x H y )  |->  ( z  e.  B  |->  ( g ( <. x ,  z >. ( 2nd `  F ) <.
y ,  z >.
) ( I `  z ) ) ) ) ) )
6248, 61opeq12d 4410 . . . . 5  |-  ( ( ( ( ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  /\  d  =  D
)  ->  <. ( x  e.  ( Base `  c
)  |->  <. ( y  e.  ( Base `  d
)  |->  ( x ( 1st `  f ) y ) ) ,  ( y  e.  (
Base `  d ) ,  z  e.  ( Base `  d )  |->  ( g  e.  ( y ( Hom  `  d
) z )  |->  ( ( ( Id `  c ) `  x
) ( <. x ,  y >. ( 2nd `  f ) <.
x ,  z >.
) g ) ) ) >. ) ,  ( x  e.  ( Base `  c ) ,  y  e.  ( Base `  c
)  |->  ( g  e.  ( x ( Hom  `  c ) y ) 
|->  ( z  e.  (
Base `  d )  |->  ( g ( <.
x ,  z >.
( 2nd `  f
) <. y ,  z
>. ) ( ( Id
`  d ) `  z ) ) ) ) ) >.  =  <. ( x  e.  A  |->  <.
( y  e.  B  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y J z )  |->  ( (  .1.  `  x )
( <. x ,  y
>. ( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. ) ,  ( x  e.  A , 
y  e.  A  |->  ( g  e.  ( x H y )  |->  ( z  e.  B  |->  ( g ( <. x ,  z >. ( 2nd `  F ) <.
y ,  z >.
) ( I `  z ) ) ) ) ) >. )
6313, 19, 62csbied2 3561 . . . 4  |-  ( ( ( ph  /\  (
e  =  <. C ,  D >.  /\  f  =  F ) )  /\  c  =  C )  ->  [_ ( 2nd `  e
)  /  d ]_ <. ( x  e.  (
Base `  c )  |-> 
<. ( y  e.  (
Base `  d )  |->  ( x ( 1st `  f ) y ) ) ,  ( y  e.  ( Base `  d
) ,  z  e.  ( Base `  d
)  |->  ( g  e.  ( y ( Hom  `  d ) z ) 
|->  ( ( ( Id
`  c ) `  x ) ( <.
x ,  y >.
( 2nd `  f
) <. x ,  z
>. ) g ) ) ) >. ) ,  ( x  e.  ( Base `  c ) ,  y  e.  ( Base `  c
)  |->  ( g  e.  ( x ( Hom  `  c ) y ) 
|->  ( z  e.  (
Base `  d )  |->  ( g ( <.
x ,  z >.
( 2nd `  f
) <. y ,  z
>. ) ( ( Id
`  d ) `  z ) ) ) ) ) >.  =  <. ( x  e.  A  |->  <.
( y  e.  B  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y J z )  |->  ( (  .1.  `  x )
( <. x ,  y
>. ( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. ) ,  ( x  e.  A , 
y  e.  A  |->  ( g  e.  ( x H y )  |->  ( z  e.  B  |->  ( g ( <. x ,  z >. ( 2nd `  F ) <.
y ,  z >.
) ( I `  z ) ) ) ) ) >. )
644, 12, 63csbied2 3561 . . 3  |-  ( (
ph  /\  ( e  =  <. C ,  D >.  /\  f  =  F ) )  ->  [_ ( 1st `  e )  / 
c ]_ [_ ( 2nd `  e )  /  d ]_ <. ( x  e.  ( Base `  c
)  |->  <. ( y  e.  ( Base `  d
)  |->  ( x ( 1st `  f ) y ) ) ,  ( y  e.  (
Base `  d ) ,  z  e.  ( Base `  d )  |->  ( g  e.  ( y ( Hom  `  d
) z )  |->  ( ( ( Id `  c ) `  x
) ( <. x ,  y >. ( 2nd `  f ) <.
x ,  z >.
) g ) ) ) >. ) ,  ( x  e.  ( Base `  c ) ,  y  e.  ( Base `  c
)  |->  ( g  e.  ( x ( Hom  `  c ) y ) 
|->  ( z  e.  (
Base `  d )  |->  ( g ( <.
x ,  z >.
( 2nd `  f
) <. y ,  z
>. ) ( ( Id
`  d ) `  z ) ) ) ) ) >.  =  <. ( x  e.  A  |->  <.
( y  e.  B  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y J z )  |->  ( (  .1.  `  x )
( <. x ,  y
>. ( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. ) ,  ( x  e.  A , 
y  e.  A  |->  ( g  e.  ( x H y )  |->  ( z  e.  B  |->  ( g ( <. x ,  z >. ( 2nd `  F ) <.
y ,  z >.
) ( I `  z ) ) ) ) ) >. )
65 opex 4932 . . . 4  |-  <. C ,  D >.  e.  _V
6665a1i 11 . . 3  |-  ( ph  -> 
<. C ,  D >.  e. 
_V )
67 curfval.f . . . 4  |-  ( ph  ->  F  e.  ( ( C  X.c  D )  Func  E
) )
68 elex 3212 . . . 4  |-  ( F  e.  ( ( C  X.c  D )  Func  E
)  ->  F  e.  _V )
6967, 68syl 17 . . 3  |-  ( ph  ->  F  e.  _V )
70 opex 4932 . . . 4  |-  <. (
x  e.  A  |->  <.
( y  e.  B  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y J z )  |->  ( (  .1.  `  x )
( <. x ,  y
>. ( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. ) ,  ( x  e.  A , 
y  e.  A  |->  ( g  e.  ( x H y )  |->  ( z  e.  B  |->  ( g ( <. x ,  z >. ( 2nd `  F ) <.
y ,  z >.
) ( I `  z ) ) ) ) ) >.  e.  _V
7170a1i 11 . . 3  |-  ( ph  -> 
<. ( x  e.  A  |-> 
<. ( y  e.  B  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y J z )  |->  ( (  .1.  `  x )
( <. x ,  y
>. ( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. ) ,  ( x  e.  A , 
y  e.  A  |->  ( g  e.  ( x H y )  |->  ( z  e.  B  |->  ( g ( <. x ,  z >. ( 2nd `  F ) <.
y ,  z >.
) ( I `  z ) ) ) ) ) >.  e.  _V )
723, 64, 66, 69, 71ovmpt2d 6788 . 2  |-  ( ph  ->  ( <. C ,  D >. curryF  F
)  =  <. (
x  e.  A  |->  <.
( y  e.  B  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y J z )  |->  ( (  .1.  `  x )
( <. x ,  y
>. ( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. ) ,  ( x  e.  A , 
y  e.  A  |->  ( g  e.  ( x H y )  |->  ( z  e.  B  |->  ( g ( <. x ,  z >. ( 2nd `  F ) <.
y ,  z >.
) ( I `  z ) ) ) ) ) >. )
731, 72syl5eq 2668 1  |-  ( ph  ->  G  =  <. (
x  e.  A  |->  <.
( y  e.  B  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y J z )  |->  ( (  .1.  `  x )
( <. x ,  y
>. ( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. ) ,  ( x  e.  A , 
y  e.  A  |->  ( g  e.  ( x H y )  |->  ( z  e.  B  |->  ( g ( <. x ,  z >. ( 2nd `  F ) <.
y ,  z >.
) ( I `  z ) ) ) ) ) >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533   <.cop 4183    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Hom chom 15952   Catccat 16325   Idccid 16326    Func cfunc 16514    X.c cxpc 16808   curryF ccurf 16850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-curf 16854
This theorem is referenced by:  curf1fval  16864  curf2  16869  curfcl  16872  curfpropd  16873  curfuncf  16878
  Copyright terms: Public domain W3C validator