MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curfpropd Structured version   Visualization version   Unicode version

Theorem curfpropd 16873
Description: If two categories have the same set of objects, morphisms, and compositions, then they curry the same functor to the same result. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
curfpropd.1  |-  ( ph  ->  ( Hom f  `  A )  =  ( Hom f  `  B ) )
curfpropd.2  |-  ( ph  ->  (compf `  A )  =  (compf `  B ) )
curfpropd.3  |-  ( ph  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
curfpropd.4  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )
curfpropd.a  |-  ( ph  ->  A  e.  Cat )
curfpropd.b  |-  ( ph  ->  B  e.  Cat )
curfpropd.c  |-  ( ph  ->  C  e.  Cat )
curfpropd.d  |-  ( ph  ->  D  e.  Cat )
curfpropd.f  |-  ( ph  ->  F  e.  ( ( A  X.c  C )  Func  E
) )
Assertion
Ref Expression
curfpropd  |-  ( ph  ->  ( <. A ,  C >. curryF  F
)  =  ( <. B ,  D >. curryF  F ) )

Proof of Theorem curfpropd
Dummy variables  x  g  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfpropd.1 . . . . 5  |-  ( ph  ->  ( Hom f  `  A )  =  ( Hom f  `  B ) )
21homfeqbas 16356 . . . 4  |-  ( ph  ->  ( Base `  A
)  =  ( Base `  B ) )
3 curfpropd.3 . . . . . . . 8  |-  ( ph  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
43homfeqbas 16356 . . . . . . 7  |-  ( ph  ->  ( Base `  C
)  =  ( Base `  D ) )
54adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  A )
)  ->  ( Base `  C )  =  (
Base `  D )
)
65mpteq1d 4738 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  A )
)  ->  ( y  e.  ( Base `  C
)  |->  ( x ( 1st `  F ) y ) )  =  ( y  e.  (
Base `  D )  |->  ( x ( 1st `  F ) y ) ) )
75adantr 481 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  C
) )  ->  ( Base `  C )  =  ( Base `  D
) )
8 eqid 2622 . . . . . . . 8  |-  ( Base `  C )  =  (
Base `  C )
9 eqid 2622 . . . . . . . 8  |-  ( Hom  `  C )  =  ( Hom  `  C )
10 eqid 2622 . . . . . . . 8  |-  ( Hom  `  D )  =  ( Hom  `  D )
113ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  A
) )  /\  (
y  e.  ( Base `  C )  /\  z  e.  ( Base `  C
) ) )  -> 
( Hom f  `  C )  =  ( Hom f  `  D ) )
12 simprl 794 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  A
) )  /\  (
y  e.  ( Base `  C )  /\  z  e.  ( Base `  C
) ) )  -> 
y  e.  ( Base `  C ) )
13 simprr 796 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  A
) )  /\  (
y  e.  ( Base `  C )  /\  z  e.  ( Base `  C
) ) )  -> 
z  e.  ( Base `  C ) )
148, 9, 10, 11, 12, 13homfeqval 16357 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( Base `  A
) )  /\  (
y  e.  ( Base `  C )  /\  z  e.  ( Base `  C
) ) )  -> 
( y ( Hom  `  C ) z )  =  ( y ( Hom  `  D )
z ) )
15 curfpropd.2 . . . . . . . . . . 11  |-  ( ph  ->  (compf `  A )  =  (compf `  B ) )
16 curfpropd.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  Cat )
17 curfpropd.b . . . . . . . . . . 11  |-  ( ph  ->  B  e.  Cat )
181, 15, 16, 17cidpropd 16370 . . . . . . . . . 10  |-  ( ph  ->  ( Id `  A
)  =  ( Id
`  B ) )
1918ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  A
) )  /\  (
y  e.  ( Base `  C )  /\  z  e.  ( Base `  C
) ) )  -> 
( Id `  A
)  =  ( Id
`  B ) )
2019fveq1d 6193 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  A
) )  /\  (
y  e.  ( Base `  C )  /\  z  e.  ( Base `  C
) ) )  -> 
( ( Id `  A ) `  x
)  =  ( ( Id `  B ) `
 x ) )
2120oveq1d 6665 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( Base `  A
) )  /\  (
y  e.  ( Base `  C )  /\  z  e.  ( Base `  C
) ) )  -> 
( ( ( Id
`  A ) `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g )  =  ( ( ( Id
`  B ) `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g ) )
2214, 21mpteq12dv 4733 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( Base `  A
) )  /\  (
y  e.  ( Base `  C )  /\  z  e.  ( Base `  C
) ) )  -> 
( g  e.  ( y ( Hom  `  C
) z )  |->  ( ( ( Id `  A ) `  x
) ( <. x ,  y >. ( 2nd `  F ) <.
x ,  z >.
) g ) )  =  ( g  e.  ( y ( Hom  `  D ) z ) 
|->  ( ( ( Id
`  B ) `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g ) ) )
235, 7, 22mpt2eq123dva 6716 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  A )
)  ->  ( y  e.  ( Base `  C
) ,  z  e.  ( Base `  C
)  |->  ( g  e.  ( y ( Hom  `  C ) z ) 
|->  ( ( ( Id
`  A ) `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g ) ) )  =  ( y  e.  ( Base `  D
) ,  z  e.  ( Base `  D
)  |->  ( g  e.  ( y ( Hom  `  D ) z ) 
|->  ( ( ( Id
`  B ) `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g ) ) ) )
246, 23opeq12d 4410 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  A )
)  ->  <. ( y  e.  ( Base `  C
)  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  (
Base `  C ) ,  z  e.  ( Base `  C )  |->  ( g  e.  ( y ( Hom  `  C
) z )  |->  ( ( ( Id `  A ) `  x
) ( <. x ,  y >. ( 2nd `  F ) <.
x ,  z >.
) g ) ) ) >.  =  <. ( y  e.  ( Base `  D )  |->  ( x ( 1st `  F
) y ) ) ,  ( y  e.  ( Base `  D
) ,  z  e.  ( Base `  D
)  |->  ( g  e.  ( y ( Hom  `  D ) z ) 
|->  ( ( ( Id
`  B ) `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. )
252, 24mpteq12dva 4732 . . 3  |-  ( ph  ->  ( x  e.  (
Base `  A )  |-> 
<. ( y  e.  (
Base `  C )  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  ( Base `  C
) ,  z  e.  ( Base `  C
)  |->  ( g  e.  ( y ( Hom  `  C ) z ) 
|->  ( ( ( Id
`  A ) `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. )  =  ( x  e.  ( Base `  B )  |->  <. (
y  e.  ( Base `  D )  |->  ( x ( 1st `  F
) y ) ) ,  ( y  e.  ( Base `  D
) ,  z  e.  ( Base `  D
)  |->  ( g  e.  ( y ( Hom  `  D ) z ) 
|->  ( ( ( Id
`  B ) `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. ) )
262adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  A )
)  ->  ( Base `  A )  =  (
Base `  B )
)
27 eqid 2622 . . . . . 6  |-  ( Base `  A )  =  (
Base `  A )
28 eqid 2622 . . . . . 6  |-  ( Hom  `  A )  =  ( Hom  `  A )
29 eqid 2622 . . . . . 6  |-  ( Hom  `  B )  =  ( Hom  `  B )
301adantr 481 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  A
)  /\  y  e.  ( Base `  A )
) )  ->  ( Hom f  `  A )  =  ( Hom f  `  B ) )
31 simprl 794 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  A
)  /\  y  e.  ( Base `  A )
) )  ->  x  e.  ( Base `  A
) )
32 simprr 796 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  A
)  /\  y  e.  ( Base `  A )
) )  ->  y  e.  ( Base `  A
) )
3327, 28, 29, 30, 31, 32homfeqval 16357 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  A
)  /\  y  e.  ( Base `  A )
) )  ->  (
x ( Hom  `  A
) y )  =  ( x ( Hom  `  B ) y ) )
344ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( Base `  A )  /\  y  e.  ( Base `  A
) ) )  /\  g  e.  ( x
( Hom  `  A ) y ) )  -> 
( Base `  C )  =  ( Base `  D
) )
35 curfpropd.4 . . . . . . . . . 10  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )
36 curfpropd.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  Cat )
37 curfpropd.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  Cat )
383, 35, 36, 37cidpropd 16370 . . . . . . . . 9  |-  ( ph  ->  ( Id `  C
)  =  ( Id
`  D ) )
3938ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  A )  /\  y  e.  ( Base `  A ) ) )  /\  g  e.  ( x ( Hom  `  A
) y ) )  /\  z  e.  (
Base `  C )
)  ->  ( Id `  C )  =  ( Id `  D ) )
4039fveq1d 6193 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  A )  /\  y  e.  ( Base `  A ) ) )  /\  g  e.  ( x ( Hom  `  A
) y ) )  /\  z  e.  (
Base `  C )
)  ->  ( ( Id `  C ) `  z )  =  ( ( Id `  D
) `  z )
)
4140oveq2d 6666 . . . . . 6  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  A )  /\  y  e.  ( Base `  A ) ) )  /\  g  e.  ( x ( Hom  `  A
) y ) )  /\  z  e.  (
Base `  C )
)  ->  ( g
( <. x ,  z
>. ( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  C ) `  z ) )  =  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) )
4234, 41mpteq12dva 4732 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  ( Base `  A )  /\  y  e.  ( Base `  A
) ) )  /\  g  e.  ( x
( Hom  `  A ) y ) )  -> 
( z  e.  (
Base `  C )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  C ) `  z ) ) )  =  ( z  e.  ( Base `  D
)  |->  ( g (
<. x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) )
4333, 42mpteq12dva 4732 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  A
)  /\  y  e.  ( Base `  A )
) )  ->  (
g  e.  ( x ( Hom  `  A
) y )  |->  ( z  e.  ( Base `  C )  |->  ( g ( <. x ,  z
>. ( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  C ) `  z ) ) ) )  =  ( g  e.  ( x ( Hom  `  B )
y )  |->  ( z  e.  ( Base `  D
)  |->  ( g (
<. x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) )
442, 26, 43mpt2eq123dva 6716 . . 3  |-  ( ph  ->  ( x  e.  (
Base `  A ) ,  y  e.  ( Base `  A )  |->  ( g  e.  ( x ( Hom  `  A
) y )  |->  ( z  e.  ( Base `  C )  |->  ( g ( <. x ,  z
>. ( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  C ) `  z ) ) ) ) )  =  ( x  e.  ( Base `  B ) ,  y  e.  ( Base `  B
)  |->  ( g  e.  ( x ( Hom  `  B ) y ) 
|->  ( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) ) )
4525, 44opeq12d 4410 . 2  |-  ( ph  -> 
<. ( x  e.  (
Base `  A )  |-> 
<. ( y  e.  (
Base `  C )  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  ( Base `  C
) ,  z  e.  ( Base `  C
)  |->  ( g  e.  ( y ( Hom  `  C ) z ) 
|->  ( ( ( Id
`  A ) `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. ) ,  ( x  e.  ( Base `  A ) ,  y  e.  ( Base `  A
)  |->  ( g  e.  ( x ( Hom  `  A ) y ) 
|->  ( z  e.  (
Base `  C )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  C ) `  z ) ) ) ) ) >.  =  <. ( x  e.  ( Base `  B )  |->  <. (
y  e.  ( Base `  D )  |->  ( x ( 1st `  F
) y ) ) ,  ( y  e.  ( Base `  D
) ,  z  e.  ( Base `  D
)  |->  ( g  e.  ( y ( Hom  `  D ) z ) 
|->  ( ( ( Id
`  B ) `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. ) ,  ( x  e.  ( Base `  B ) ,  y  e.  ( Base `  B
)  |->  ( g  e.  ( x ( Hom  `  B ) y ) 
|->  ( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) ) >. )
46 eqid 2622 . . 3  |-  ( <. A ,  C >. curryF  F )  =  ( <. A ,  C >. curryF  F )
47 curfpropd.f . . 3  |-  ( ph  ->  F  e.  ( ( A  X.c  C )  Func  E
) )
48 eqid 2622 . . 3  |-  ( Id
`  A )  =  ( Id `  A
)
49 eqid 2622 . . 3  |-  ( Id
`  C )  =  ( Id `  C
)
5046, 27, 16, 36, 47, 8, 9, 48, 28, 49curfval 16863 . 2  |-  ( ph  ->  ( <. A ,  C >. curryF  F
)  =  <. (
x  e.  ( Base `  A )  |->  <. (
y  e.  ( Base `  C )  |->  ( x ( 1st `  F
) y ) ) ,  ( y  e.  ( Base `  C
) ,  z  e.  ( Base `  C
)  |->  ( g  e.  ( y ( Hom  `  C ) z ) 
|->  ( ( ( Id
`  A ) `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. ) ,  ( x  e.  ( Base `  A ) ,  y  e.  ( Base `  A
)  |->  ( g  e.  ( x ( Hom  `  A ) y ) 
|->  ( z  e.  (
Base `  C )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  C ) `  z ) ) ) ) ) >. )
51 eqid 2622 . . 3  |-  ( <. B ,  D >. curryF  F )  =  ( <. B ,  D >. curryF  F )
52 eqid 2622 . . 3  |-  ( Base `  B )  =  (
Base `  B )
531, 15, 3, 35, 16, 17, 36, 37xpcpropd 16848 . . . . 5  |-  ( ph  ->  ( A  X.c  C )  =  ( B  X.c  D
) )
5453oveq1d 6665 . . . 4  |-  ( ph  ->  ( ( A  X.c  C
)  Func  E )  =  ( ( B  X.c  D )  Func  E
) )
5547, 54eleqtrd 2703 . . 3  |-  ( ph  ->  F  e.  ( ( B  X.c  D )  Func  E
) )
56 eqid 2622 . . 3  |-  ( Base `  D )  =  (
Base `  D )
57 eqid 2622 . . 3  |-  ( Id
`  B )  =  ( Id `  B
)
58 eqid 2622 . . 3  |-  ( Id
`  D )  =  ( Id `  D
)
5951, 52, 17, 37, 55, 56, 10, 57, 29, 58curfval 16863 . 2  |-  ( ph  ->  ( <. B ,  D >. curryF  F
)  =  <. (
x  e.  ( Base `  B )  |->  <. (
y  e.  ( Base `  D )  |->  ( x ( 1st `  F
) y ) ) ,  ( y  e.  ( Base `  D
) ,  z  e.  ( Base `  D
)  |->  ( g  e.  ( y ( Hom  `  D ) z ) 
|->  ( ( ( Id
`  B ) `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. ) ,  ( x  e.  ( Base `  B ) ,  y  e.  ( Base `  B
)  |->  ( g  e.  ( x ( Hom  `  B ) y ) 
|->  ( z  e.  (
Base `  D )  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( ( Id
`  D ) `  z ) ) ) ) ) >. )
6045, 50, 593eqtr4d 2666 1  |-  ( ph  ->  ( <. A ,  C >. curryF  F
)  =  ( <. B ,  D >. curryF  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Hom chom 15952   Catccat 16325   Idccid 16326   Hom f chomf 16327  compfccomf 16328    Func cfunc 16514    X.c cxpc 16808   curryF ccurf 16850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-homf 16331  df-comf 16332  df-xpc 16812  df-curf 16854
This theorem is referenced by:  yonpropd  16908  oppcyon  16909
  Copyright terms: Public domain W3C validator