| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for dath 35022. Show the lines |
| Ref | Expression |
|---|---|
| dalema.ph |
|
| dalemc.l |
|
| dalemc.j |
|
| dalemc.a |
|
| dalem1.o |
|
| dalem1.y |
|
| Ref | Expression |
|---|---|
| dalem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalema.ph |
. . 3
| |
| 2 | 1 | dalemclpjs 34920 |
. 2
|
| 3 | 1 | dalem-clpjq 34923 |
. . . . . 6
|
| 4 | 3 | adantr 481 |
. . . . 5
|
| 5 | 1 | dalemkehl 34909 |
. . . . . . . . . 10
|
| 6 | 1 | dalempea 34912 |
. . . . . . . . . 10
|
| 7 | 1 | dalemsea 34915 |
. . . . . . . . . 10
|
| 8 | dalemc.l |
. . . . . . . . . . 11
| |
| 9 | dalemc.j |
. . . . . . . . . . 11
| |
| 10 | dalemc.a |
. . . . . . . . . . 11
| |
| 11 | 8, 9, 10 | hlatlej1 34661 |
. . . . . . . . . 10
|
| 12 | 5, 6, 7, 11 | syl3anc 1326 |
. . . . . . . . 9
|
| 13 | 12 | adantr 481 |
. . . . . . . 8
|
| 14 | 1 | dalemqea 34913 |
. . . . . . . . . . 11
|
| 15 | 1 | dalemtea 34916 |
. . . . . . . . . . 11
|
| 16 | 8, 9, 10 | hlatlej1 34661 |
. . . . . . . . . . 11
|
| 17 | 5, 14, 15, 16 | syl3anc 1326 |
. . . . . . . . . 10
|
| 18 | 17 | adantr 481 |
. . . . . . . . 9
|
| 19 | simpr 477 |
. . . . . . . . 9
| |
| 20 | 18, 19 | breqtrrd 4681 |
. . . . . . . 8
|
| 21 | 1 | dalemkelat 34910 |
. . . . . . . . . 10
|
| 22 | 1, 10 | dalempeb 34925 |
. . . . . . . . . 10
|
| 23 | 1, 10 | dalemqeb 34926 |
. . . . . . . . . 10
|
| 24 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 25 | 24, 9, 10 | hlatjcl 34653 |
. . . . . . . . . . 11
|
| 26 | 5, 6, 7, 25 | syl3anc 1326 |
. . . . . . . . . 10
|
| 27 | 24, 8, 9 | latjle12 17062 |
. . . . . . . . . 10
|
| 28 | 21, 22, 23, 26, 27 | syl13anc 1328 |
. . . . . . . . 9
|
| 29 | 28 | adantr 481 |
. . . . . . . 8
|
| 30 | 13, 20, 29 | mpbi2and 956 |
. . . . . . 7
|
| 31 | 1 | dalemrea 34914 |
. . . . . . . . . 10
|
| 32 | 1 | dalemyeo 34918 |
. . . . . . . . . 10
|
| 33 | dalem1.o |
. . . . . . . . . . 11
| |
| 34 | dalem1.y |
. . . . . . . . . . 11
| |
| 35 | 9, 10, 33, 34 | lplnri1 34839 |
. . . . . . . . . 10
|
| 36 | 5, 6, 14, 31, 32, 35 | syl131anc 1339 |
. . . . . . . . 9
|
| 37 | 8, 9, 10 | ps-1 34763 |
. . . . . . . . 9
|
| 38 | 5, 6, 14, 36, 6, 7, 37 | syl132anc 1344 |
. . . . . . . 8
|
| 39 | 38 | adantr 481 |
. . . . . . 7
|
| 40 | 30, 39 | mpbid 222 |
. . . . . 6
|
| 41 | 40 | breq2d 4665 |
. . . . 5
|
| 42 | 4, 41 | mtbid 314 |
. . . 4
|
| 43 | 42 | ex 450 |
. . 3
|
| 44 | 43 | necon2ad 2809 |
. 2
|
| 45 | 2, 44 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 |
| This theorem is referenced by: dalemcea 34946 dalem2 34947 |
| Copyright terms: Public domain | W3C validator |