Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem2 Structured version   Visualization version   Unicode version

Theorem dalem2 34947
Description: Lemma for dath 35022. Show the lines  P Q and  S T form a plane. (Contributed by NM, 11-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalemc.l  |-  .<_  =  ( le `  K )
dalemc.j  |-  .\/  =  ( join `  K )
dalemc.a  |-  A  =  ( Atoms `  K )
dalem1.o  |-  O  =  ( LPlanes `  K )
dalem1.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
Assertion
Ref Expression
dalem2  |-  ( ph  ->  ( ( P  .\/  Q )  .\/  ( S 
.\/  T ) )  e.  O )

Proof of Theorem dalem2
StepHypRef Expression
1 dalema.ph . . . 4  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
21dalemkehl 34909 . . 3  |-  ( ph  ->  K  e.  HL )
31dalempea 34912 . . 3  |-  ( ph  ->  P  e.  A )
41dalemqea 34913 . . 3  |-  ( ph  ->  Q  e.  A )
51dalemsea 34915 . . 3  |-  ( ph  ->  S  e.  A )
61dalemtea 34916 . . 3  |-  ( ph  ->  T  e.  A )
7 dalemc.j . . . 4  |-  .\/  =  ( join `  K )
8 dalemc.a . . . 4  |-  A  =  ( Atoms `  K )
97, 8hlatj4 34660 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( ( P  .\/  Q )  .\/  ( S 
.\/  T ) )  =  ( ( P 
.\/  S )  .\/  ( Q  .\/  T ) ) )
102, 3, 4, 5, 6, 9syl122anc 1335 . 2  |-  ( ph  ->  ( ( P  .\/  Q )  .\/  ( S 
.\/  T ) )  =  ( ( P 
.\/  S )  .\/  ( Q  .\/  T ) ) )
11 dalemc.l . . . . 5  |-  .<_  =  ( le `  K )
12 dalem1.o . . . . 5  |-  O  =  ( LPlanes `  K )
13 dalem1.y . . . . 5  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
141, 11, 7, 8, 12, 13dalempjsen 34939 . . . 4  |-  ( ph  ->  ( P  .\/  S
)  e.  ( LLines `  K ) )
151, 11, 7, 8, 12, 13dalemqnet 34938 . . . . 5  |-  ( ph  ->  Q  =/=  T )
16 eqid 2622 . . . . . 6  |-  ( LLines `  K )  =  (
LLines `  K )
177, 8, 16llni2 34798 . . . . 5  |-  ( ( ( K  e.  HL  /\  Q  e.  A  /\  T  e.  A )  /\  Q  =/=  T
)  ->  ( Q  .\/  T )  e.  (
LLines `  K ) )
182, 4, 6, 15, 17syl31anc 1329 . . . 4  |-  ( ph  ->  ( Q  .\/  T
)  e.  ( LLines `  K ) )
191, 11, 7, 8, 12, 13dalem1 34945 . . . 4  |-  ( ph  ->  ( P  .\/  S
)  =/=  ( Q 
.\/  T ) )
201, 11, 7, 8, 12, 13dalemcea 34946 . . . . 5  |-  ( ph  ->  C  e.  A )
211dalemclpjs 34920 . . . . 5  |-  ( ph  ->  C  .<_  ( P  .\/  S ) )
221dalemclqjt 34921 . . . . 5  |-  ( ph  ->  C  .<_  ( Q  .\/  T ) )
23 eqid 2622 . . . . . 6  |-  ( meet `  K )  =  (
meet `  K )
24 eqid 2622 . . . . . 6  |-  ( 0.
`  K )  =  ( 0. `  K
)
2511, 23, 24, 8, 162llnm4 34856 . . . . 5  |-  ( ( K  e.  HL  /\  ( C  e.  A  /\  ( P  .\/  S
)  e.  ( LLines `  K )  /\  ( Q  .\/  T )  e.  ( LLines `  K )
)  /\  ( C  .<_  ( P  .\/  S
)  /\  C  .<_  ( Q  .\/  T ) ) )  ->  (
( P  .\/  S
) ( meet `  K
) ( Q  .\/  T ) )  =/=  ( 0. `  K ) )
262, 20, 14, 18, 21, 22, 25syl132anc 1344 . . . 4  |-  ( ph  ->  ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) )  =/=  ( 0. `  K ) )
2723, 24, 8, 162llnmat 34810 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  .\/  S
)  e.  ( LLines `  K )  /\  ( Q  .\/  T )  e.  ( LLines `  K )
)  /\  ( ( P  .\/  S )  =/=  ( Q  .\/  T
)  /\  ( ( P  .\/  S ) (
meet `  K )
( Q  .\/  T
) )  =/=  ( 0. `  K ) ) )  ->  ( ( P  .\/  S ) (
meet `  K )
( Q  .\/  T
) )  e.  A
)
282, 14, 18, 19, 26, 27syl32anc 1334 . . 3  |-  ( ph  ->  ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) )  e.  A
)
297, 23, 8, 16, 122llnmj 34846 . . . 4  |-  ( ( K  e.  HL  /\  ( P  .\/  S )  e.  ( LLines `  K
)  /\  ( Q  .\/  T )  e.  (
LLines `  K ) )  ->  ( ( ( P  .\/  S ) ( meet `  K
) ( Q  .\/  T ) )  e.  A  <->  ( ( P  .\/  S
)  .\/  ( Q  .\/  T ) )  e.  O ) )
302, 14, 18, 29syl3anc 1326 . . 3  |-  ( ph  ->  ( ( ( P 
.\/  S ) (
meet `  K )
( Q  .\/  T
) )  e.  A  <->  ( ( P  .\/  S
)  .\/  ( Q  .\/  T ) )  e.  O ) )
3128, 30mpbid 222 . 2  |-  ( ph  ->  ( ( P  .\/  S )  .\/  ( Q 
.\/  T ) )  e.  O )
3210, 31eqeltrd 2701 1  |-  ( ph  ->  ( ( P  .\/  Q )  .\/  ( S 
.\/  T ) )  e.  O )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   0.cp0 17037   Atomscatm 34550   HLchlt 34637   LLinesclln 34777   LPlanesclpl 34778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785
This theorem is referenced by:  dalemdea  34948
  Copyright terms: Public domain W3C validator