Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem38 Structured version   Visualization version   Unicode version

Theorem dalem38 34996
Description: Lemma for dath 35022. Plane  Y belongs to the 3-dimensional volume  G H I c. (Contributed by NM, 5-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem38.m  |-  ./\  =  ( meet `  K )
dalem38.o  |-  O  =  ( LPlanes `  K )
dalem38.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem38.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem38.g  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
dalem38.h  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
dalem38.i  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
Assertion
Ref Expression
dalem38  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  Y  .<_  ( ( ( G  .\/  H ) 
.\/  I )  .\/  c ) )

Proof of Theorem dalem38
StepHypRef Expression
1 dalem38.y . 2  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
2 dalem.ph . . . . . . 7  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
3 dalem.l . . . . . . 7  |-  .<_  =  ( le `  K )
4 dalem.j . . . . . . 7  |-  .\/  =  ( join `  K )
5 dalem.a . . . . . . 7  |-  A  =  ( Atoms `  K )
6 dalem.ps . . . . . . 7  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
7 dalem38.m . . . . . . 7  |-  ./\  =  ( meet `  K )
8 dalem38.o . . . . . . 7  |-  O  =  ( LPlanes `  K )
9 dalem38.z . . . . . . 7  |-  Z  =  ( ( S  .\/  T )  .\/  U )
10 dalem38.g . . . . . . 7  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
112, 3, 4, 5, 6, 7, 8, 1, 9, 10dalem28 34986 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  P  .<_  ( G  .\/  c ) )
12 dalem38.h . . . . . . 7  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
132, 3, 4, 5, 6, 7, 8, 1, 9, 12dalem33 34991 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  Q  .<_  ( H  .\/  c ) )
142dalemkelat 34910 . . . . . . . 8  |-  ( ph  ->  K  e.  Lat )
15143ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  Lat )
162, 5dalempeb 34925 . . . . . . . 8  |-  ( ph  ->  P  e.  ( Base `  K ) )
17163ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  P  e.  ( Base `  K ) )
182dalemkehl 34909 . . . . . . . . 9  |-  ( ph  ->  K  e.  HL )
19183ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  HL )
202, 3, 4, 5, 6, 7, 8, 1, 9, 10dalem23 34982 . . . . . . . 8  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  e.  A )
216dalemccea 34969 . . . . . . . . 9  |-  ( ps 
->  c  e.  A
)
22213ad2ant3 1084 . . . . . . . 8  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  e.  A )
23 eqid 2622 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
2423, 4, 5hlatjcl 34653 . . . . . . . 8  |-  ( ( K  e.  HL  /\  G  e.  A  /\  c  e.  A )  ->  ( G  .\/  c
)  e.  ( Base `  K ) )
2519, 20, 22, 24syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( G  .\/  c
)  e.  ( Base `  K ) )
262, 5dalemqeb 34926 . . . . . . . 8  |-  ( ph  ->  Q  e.  ( Base `  K ) )
27263ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  Q  e.  ( Base `  K ) )
282, 3, 4, 5, 6, 7, 8, 1, 9, 12dalem29 34987 . . . . . . . 8  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  H  e.  A )
2923, 4, 5hlatjcl 34653 . . . . . . . 8  |-  ( ( K  e.  HL  /\  H  e.  A  /\  c  e.  A )  ->  ( H  .\/  c
)  e.  ( Base `  K ) )
3019, 28, 22, 29syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( H  .\/  c
)  e.  ( Base `  K ) )
3123, 3, 4latjlej12 17067 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  ( G  .\/  c )  e.  ( Base `  K
) )  /\  ( Q  e.  ( Base `  K )  /\  ( H  .\/  c )  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( G  .\/  c )  /\  Q  .<_  ( H 
.\/  c ) )  ->  ( P  .\/  Q )  .<_  ( ( G  .\/  c )  .\/  ( H  .\/  c ) ) ) )
3215, 17, 25, 27, 30, 31syl122anc 1335 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( P  .<_  ( G  .\/  c )  /\  Q  .<_  ( H 
.\/  c ) )  ->  ( P  .\/  Q )  .<_  ( ( G  .\/  c )  .\/  ( H  .\/  c ) ) ) )
3311, 13, 32mp2and 715 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( P  .\/  Q
)  .<_  ( ( G 
.\/  c )  .\/  ( H  .\/  c ) ) )
3423, 5atbase 34576 . . . . . . 7  |-  ( G  e.  A  ->  G  e.  ( Base `  K
) )
3520, 34syl 17 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  e.  ( Base `  K ) )
3623, 5atbase 34576 . . . . . . 7  |-  ( H  e.  A  ->  H  e.  ( Base `  K
) )
3728, 36syl 17 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  H  e.  ( Base `  K ) )
386, 5dalemcceb 34975 . . . . . . 7  |-  ( ps 
->  c  e.  ( Base `  K ) )
39383ad2ant3 1084 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  e.  ( Base `  K ) )
4023, 4latjjdir 17104 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( G  e.  ( Base `  K )  /\  H  e.  ( Base `  K )  /\  c  e.  ( Base `  K
) ) )  -> 
( ( G  .\/  H )  .\/  c )  =  ( ( G 
.\/  c )  .\/  ( H  .\/  c ) ) )
4115, 35, 37, 39, 40syl13anc 1328 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  .\/  c )  =  ( ( G 
.\/  c )  .\/  ( H  .\/  c ) ) )
4233, 41breqtrrd 4681 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( P  .\/  Q
)  .<_  ( ( G 
.\/  H )  .\/  c ) )
43 dalem38.i . . . . 5  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
442, 3, 4, 5, 6, 7, 8, 1, 9, 43dalem37 34995 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  R  .<_  ( I  .\/  c ) )
452, 4, 5dalempjqeb 34931 . . . . . 6  |-  ( ph  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
46453ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
4723, 4, 5hlatjcl 34653 . . . . . . 7  |-  ( ( K  e.  HL  /\  G  e.  A  /\  H  e.  A )  ->  ( G  .\/  H
)  e.  ( Base `  K ) )
4819, 20, 28, 47syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( G  .\/  H
)  e.  ( Base `  K ) )
4923, 4latjcl 17051 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( G  .\/  H )  e.  ( Base `  K
)  /\  c  e.  ( Base `  K )
)  ->  ( ( G  .\/  H )  .\/  c )  e.  (
Base `  K )
)
5015, 48, 39, 49syl3anc 1326 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  .\/  c )  e.  ( Base `  K
) )
512, 5dalemreb 34927 . . . . . 6  |-  ( ph  ->  R  e.  ( Base `  K ) )
52513ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  R  e.  ( Base `  K ) )
532, 3, 4, 5, 6, 7, 8, 1, 9, 43dalem34 34992 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  I  e.  A )
5423, 4, 5hlatjcl 34653 . . . . . 6  |-  ( ( K  e.  HL  /\  I  e.  A  /\  c  e.  A )  ->  ( I  .\/  c
)  e.  ( Base `  K ) )
5519, 53, 22, 54syl3anc 1326 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( I  .\/  c
)  e.  ( Base `  K ) )
5623, 3, 4latjlej12 17067 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  Q )  e.  ( Base `  K )  /\  (
( G  .\/  H
)  .\/  c )  e.  ( Base `  K
) )  /\  ( R  e.  ( Base `  K )  /\  (
I  .\/  c )  e.  ( Base `  K
) ) )  -> 
( ( ( P 
.\/  Q )  .<_  ( ( G  .\/  H )  .\/  c )  /\  R  .<_  ( I 
.\/  c ) )  ->  ( ( P 
.\/  Q )  .\/  R )  .<_  ( (
( G  .\/  H
)  .\/  c )  .\/  ( I  .\/  c
) ) ) )
5715, 46, 50, 52, 55, 56syl122anc 1335 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( P 
.\/  Q )  .<_  ( ( G  .\/  H )  .\/  c )  /\  R  .<_  ( I 
.\/  c ) )  ->  ( ( P 
.\/  Q )  .\/  R )  .<_  ( (
( G  .\/  H
)  .\/  c )  .\/  ( I  .\/  c
) ) ) )
5842, 44, 57mp2and 715 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( P  .\/  Q )  .\/  R ) 
.<_  ( ( ( G 
.\/  H )  .\/  c )  .\/  (
I  .\/  c )
) )
5923, 5atbase 34576 . . . . 5  |-  ( I  e.  A  ->  I  e.  ( Base `  K
) )
6053, 59syl 17 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  I  e.  ( Base `  K ) )
6123, 4latjjdir 17104 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( G  .\/  H )  e.  ( Base `  K )  /\  I  e.  ( Base `  K
)  /\  c  e.  ( Base `  K )
) )  ->  (
( ( G  .\/  H )  .\/  I ) 
.\/  c )  =  ( ( ( G 
.\/  H )  .\/  c )  .\/  (
I  .\/  c )
) )
6215, 48, 60, 39, 61syl13anc 1328 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( G 
.\/  H )  .\/  I )  .\/  c
)  =  ( ( ( G  .\/  H
)  .\/  c )  .\/  ( I  .\/  c
) ) )
6358, 62breqtrrd 4681 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( P  .\/  Q )  .\/  R ) 
.<_  ( ( ( G 
.\/  H )  .\/  I )  .\/  c
) )
641, 63syl5eqbr 4688 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  Y  .<_  ( ( ( G  .\/  H ) 
.\/  I )  .\/  c ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   Atomscatm 34550   HLchlt 34637   LPlanesclpl 34778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785
This theorem is referenced by:  dalem39  34997
  Copyright terms: Public domain W3C validator