Proof of Theorem dalem39
Step | Hyp | Ref
| Expression |
1 | | dalem.ph |
. . . . 5
         
 
  
    
 
   
 
 
               |
2 | 1 | dalemkehl 34909 |
. . . 4
   |
3 | 2 | 3ad2ant1 1082 |
. . 3
 

  |
4 | 1 | dalemyeo 34918 |
. . . . 5
   |
5 | 4 | 3ad2ant1 1082 |
. . . 4
 

  |
6 | | dalem.ps |
. . . . . 6
  

       |
7 | 6 | dalemccea 34969 |
. . . . 5

  |
8 | 7 | 3ad2ant3 1084 |
. . . 4
 
   |
9 | 6 | dalem-ccly 34971 |
. . . . 5
   |
10 | 9 | 3ad2ant3 1084 |
. . . 4
 

  |
11 | | dalem.l |
. . . . 5
     |
12 | | dalem.j |
. . . . 5
     |
13 | | dalem.a |
. . . . 5
     |
14 | | dalem38.o |
. . . . 5
     |
15 | | eqid 2622 |
. . . . 5
         |
16 | 11, 12, 13, 14, 15 | lvoli3 34863 |
. . . 4
  
          |
17 | 3, 5, 8, 10, 16 | syl31anc 1329 |
. . 3
 
         |
18 | | dalem38.m |
. . . 4
     |
19 | | dalem38.y |
. . . 4
     |
20 | | dalem38.z |
. . . 4
     |
21 | | dalem38.i |
. . . 4
  
    |
22 | 1, 11, 12, 13, 6, 18, 14, 19, 20, 21 | dalem34 34992 |
. . 3
 

  |
23 | | dalem38.g |
. . . 4
  
    |
24 | 1, 11, 12, 13, 6, 18, 14, 19, 20, 23 | dalem23 34982 |
. . 3
 

  |
25 | 11, 12, 13, 15 | lvolnle3at 34868 |
. . 3
          
  
       |
26 | 3, 17, 22, 24, 8, 25 | syl23anc 1333 |
. 2
 
         |
27 | | dalem38.h |
. . . . . . 7
  
    |
28 | 1, 11, 12, 13, 6, 18, 14, 19, 20, 23, 27, 21 | dalem38 34996 |
. . . . . 6
 
         |
29 | 1 | dalemkelat 34910 |
. . . . . . . 8
   |
30 | 29 | 3ad2ant1 1082 |
. . . . . . 7
 

  |
31 | 1, 11, 12, 13, 6, 18, 14, 19, 20, 27 | dalem29 34987 |
. . . . . . . . 9
 

  |
32 | | eqid 2622 |
. . . . . . . . . 10
         |
33 | 32, 12, 13 | hlatjcl 34653 |
. . . . . . . . 9
 
         |
34 | 3, 24, 31, 33 | syl3anc 1326 |
. . . . . . . 8
 
         |
35 | 32, 13 | atbase 34576 |
. . . . . . . . 9
       |
36 | 22, 35 | syl 17 |
. . . . . . . 8
 

      |
37 | 32, 12 | latjcl 17051 |
. . . . . . . 8
  
    
    
          |
38 | 30, 34, 36, 37 | syl3anc 1326 |
. . . . . . 7
 
           |
39 | 6, 13 | dalemcceb 34975 |
. . . . . . . 8

      |
40 | 39 | 3ad2ant3 1084 |
. . . . . . 7
 
       |
41 | 32, 11, 12 | latlej2 17061 |
. . . . . . 7
         
    
        |
42 | 30, 38, 40, 41 | syl3anc 1326 |
. . . . . 6
 
         |
43 | 1, 14 | dalemyeb 34935 |
. . . . . . . 8
       |
44 | 43 | 3ad2ant1 1082 |
. . . . . . 7
 

      |
45 | 32, 12 | latjcl 17051 |
. . . . . . . 8
         
    
   
        |
46 | 30, 38, 40, 45 | syl3anc 1326 |
. . . . . . 7
 
             |
47 | 32, 11, 12 | latjle12 17062 |
. . . . . . 7
  
   
                              
     
     |
48 | 30, 44, 40, 46, 47 | syl13anc 1328 |
. . . . . 6
 
               
     
     |
49 | 28, 42, 48 | mpbi2and 956 |
. . . . 5
 
           |
50 | 12, 13 | hlatjrot 34659 |
. . . . . . 7
  
    
       |
51 | 3, 24, 31, 22, 50 | syl13anc 1328 |
. . . . . 6
 
           |
52 | 51 | oveq1d 6665 |
. . . . 5
 
          
    |
53 | 49, 52 | breqtrd 4679 |
. . . 4
 
           |
54 | 53 | adantr 481 |
. . 3
  

        
    |
55 | 32, 13 | atbase 34576 |
. . . . . . 7
       |
56 | 31, 55 | syl 17 |
. . . . . 6
 

      |
57 | 32, 12, 13 | hlatjcl 34653 |
. . . . . . 7
 
         |
58 | 3, 22, 24, 57 | syl3anc 1326 |
. . . . . 6
 
         |
59 | 32, 11, 12 | latleeqj2 17064 |
. . . . . 6
 
    
                  |
60 | 30, 56, 58, 59 | syl3anc 1326 |
. . . . 5
 
   
 
       |
61 | 60 | biimpa 501 |
. . . 4
  

           |
62 | 61 | oveq1d 6665 |
. . 3
  

           
   |
63 | 54, 62 | breqtrd 4679 |
. 2
  

           |
64 | 26, 63 | mtand 691 |
1
 

    |