MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjlej12 Structured version   Visualization version   Unicode version

Theorem latjlej12 17067
Description: Add join to both sides of a lattice ordering. (chlej12i 28334 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
latlej.b  |-  B  =  ( Base `  K
)
latlej.l  |-  .<_  =  ( le `  K )
latlej.j  |-  .\/  =  ( join `  K )
Assertion
Ref Expression
latjlej12  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( ( X  .<_  Y  /\  Z  .<_  W )  ->  ( X  .\/  Z )  .<_  ( Y  .\/  W ) ) )

Proof of Theorem latjlej12
StepHypRef Expression
1 simp1 1061 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  ->  K  e.  Lat )
2 simp2l 1087 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  ->  X  e.  B )
3 simp2r 1088 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  ->  Y  e.  B )
4 simp3l 1089 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  ->  Z  e.  B )
5 latlej.b . . . 4  |-  B  =  ( Base `  K
)
6 latlej.l . . . 4  |-  .<_  =  ( le `  K )
7 latlej.j . . . 4  |-  .\/  =  ( join `  K )
85, 6, 7latjlej1 17065 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  ( X  .\/  Z )  .<_  ( Y  .\/  Z ) ) )
91, 2, 3, 4, 8syl13anc 1328 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( X  .<_  Y  -> 
( X  .\/  Z
)  .<_  ( Y  .\/  Z ) ) )
10 simp3r 1090 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  ->  W  e.  B )
115, 6, 7latjlej2 17066 . . 3  |-  ( ( K  e.  Lat  /\  ( Z  e.  B  /\  W  e.  B  /\  Y  e.  B
) )  ->  ( Z  .<_  W  ->  ( Y  .\/  Z )  .<_  ( Y  .\/  W ) ) )
121, 4, 10, 3, 11syl13anc 1328 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( Z  .<_  W  -> 
( Y  .\/  Z
)  .<_  ( Y  .\/  W ) ) )
135, 7latjcl 17051 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .\/  Z
)  e.  B )
141, 2, 4, 13syl3anc 1326 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( X  .\/  Z
)  e.  B )
155, 7latjcl 17051 . . . 4  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .\/  Z
)  e.  B )
161, 3, 4, 15syl3anc 1326 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( Y  .\/  Z
)  e.  B )
175, 7latjcl 17051 . . . 4  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  W  e.  B )  ->  ( Y  .\/  W
)  e.  B )
181, 3, 10, 17syl3anc 1326 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( Y  .\/  W
)  e.  B )
195, 6lattr 17056 . . 3  |-  ( ( K  e.  Lat  /\  ( ( X  .\/  Z )  e.  B  /\  ( Y  .\/  Z )  e.  B  /\  ( Y  .\/  W )  e.  B ) )  -> 
( ( ( X 
.\/  Z )  .<_  ( Y  .\/  Z )  /\  ( Y  .\/  Z )  .<_  ( Y  .\/  W ) )  -> 
( X  .\/  Z
)  .<_  ( Y  .\/  W ) ) )
201, 14, 16, 18, 19syl13anc 1328 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( ( ( X 
.\/  Z )  .<_  ( Y  .\/  Z )  /\  ( Y  .\/  Z )  .<_  ( Y  .\/  W ) )  -> 
( X  .\/  Z
)  .<_  ( Y  .\/  W ) ) )
219, 12, 20syl2and 500 1  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( ( X  .<_  Y  /\  Z  .<_  W )  ->  ( X  .\/  Z )  .<_  ( Y  .\/  W ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   Latclat 17045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-poset 16946  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-lat 17046
This theorem is referenced by:  latledi  17089  dalem-cly  34957  dalem38  34996  dalem44  35002  cdlema1N  35077  pmapjoin  35138  4atexlemc  35355  cdlemg33a  35994
  Copyright terms: Public domain W3C validator