| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfac2a | Structured version Visualization version Unicode version | ||
| Description: Our Axiom of Choice (in the form of ac3 9284) implies the Axiom of Choice (first form) of [Enderton] p. 49. The proof uses neither AC nor the Axiom of Regularity. See dfac2 8953 for the converse (which does use the Axiom of Regularity). (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| dfac2a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotauni 6617 |
. . . . . . . . 9
| |
| 2 | riotacl 6625 |
. . . . . . . . 9
| |
| 3 | 1, 2 | eqeltrrd 2702 |
. . . . . . . 8
|
| 4 | elequ2 2004 |
. . . . . . . . . . . . 13
| |
| 5 | elequ1 1997 |
. . . . . . . . . . . . . . 15
| |
| 6 | 5 | anbi1d 741 |
. . . . . . . . . . . . . 14
|
| 7 | 6 | rexbidv 3052 |
. . . . . . . . . . . . 13
|
| 8 | 4, 7 | anbi12d 747 |
. . . . . . . . . . . 12
|
| 9 | 8 | rabbidva2 3186 |
. . . . . . . . . . 11
|
| 10 | 9 | unieqd 4446 |
. . . . . . . . . 10
|
| 11 | eqid 2622 |
. . . . . . . . . 10
| |
| 12 | vex 3203 |
. . . . . . . . . . . 12
| |
| 13 | 12 | rabex 4813 |
. . . . . . . . . . 11
|
| 14 | 13 | uniex 6953 |
. . . . . . . . . 10
|
| 15 | 10, 11, 14 | fvmpt 6282 |
. . . . . . . . 9
|
| 16 | 15 | eleq1d 2686 |
. . . . . . . 8
|
| 17 | 3, 16 | syl5ibr 236 |
. . . . . . 7
|
| 18 | 17 | imim2d 57 |
. . . . . 6
|
| 19 | 18 | ralimia 2950 |
. . . . 5
|
| 20 | ssrab2 3687 |
. . . . . . . . . . 11
| |
| 21 | elssuni 4467 |
. . . . . . . . . . 11
| |
| 22 | 20, 21 | syl5ss 3614 |
. . . . . . . . . 10
|
| 23 | 22 | unissd 4462 |
. . . . . . . . 9
|
| 24 | vex 3203 |
. . . . . . . . . . . 12
| |
| 25 | 24 | uniex 6953 |
. . . . . . . . . . 11
|
| 26 | 25 | uniex 6953 |
. . . . . . . . . 10
|
| 27 | 26 | elpw2 4828 |
. . . . . . . . 9
|
| 28 | 23, 27 | sylibr 224 |
. . . . . . . 8
|
| 29 | 11, 28 | fmpti 6383 |
. . . . . . 7
|
| 30 | 26 | pwex 4848 |
. . . . . . 7
|
| 31 | fex2 7121 |
. . . . . . 7
| |
| 32 | 29, 24, 30, 31 | mp3an 1424 |
. . . . . 6
|
| 33 | fveq1 6190 |
. . . . . . . . 9
| |
| 34 | 33 | eleq1d 2686 |
. . . . . . . 8
|
| 35 | 34 | imbi2d 330 |
. . . . . . 7
|
| 36 | 35 | ralbidv 2986 |
. . . . . 6
|
| 37 | 32, 36 | spcev 3300 |
. . . . 5
|
| 38 | 19, 37 | syl 17 |
. . . 4
|
| 39 | 38 | exlimiv 1858 |
. . 3
|
| 40 | 39 | alimi 1739 |
. 2
|
| 41 | dfac3 8944 |
. 2
| |
| 42 | 40, 41 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-riota 6611 df-ac 8939 |
| This theorem is referenced by: dfac2 8953 axac2 9288 |
| Copyright terms: Public domain | W3C validator |