| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfac5lem3 | Structured version Visualization version Unicode version | ||
| Description: Lemma for dfac5 8951. (Contributed by NM, 12-Apr-2004.) |
| Ref | Expression |
|---|---|
| dfac5lem.1 |
|
| Ref | Expression |
|---|---|
| dfac5lem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 4908 |
. . . 4
| |
| 2 | vex 3203 |
. . . 4
| |
| 3 | 1, 2 | xpex 6962 |
. . 3
|
| 4 | neeq1 2856 |
. . . 4
| |
| 5 | eqeq1 2626 |
. . . . 5
| |
| 6 | 5 | rexbidv 3052 |
. . . 4
|
| 7 | 4, 6 | anbi12d 747 |
. . 3
|
| 8 | 3, 7 | elab 3350 |
. 2
|
| 9 | dfac5lem.1 |
. . 3
| |
| 10 | 9 | eleq2i 2693 |
. 2
|
| 11 | xpeq2 5129 |
. . . . . 6
| |
| 12 | xp0 5552 |
. . . . . 6
| |
| 13 | 11, 12 | syl6eq 2672 |
. . . . 5
|
| 14 | rneq 5351 |
. . . . . 6
| |
| 15 | 2 | snnz 4309 |
. . . . . . 7
|
| 16 | rnxp 5564 |
. . . . . . 7
| |
| 17 | 15, 16 | ax-mp 5 |
. . . . . 6
|
| 18 | rn0 5377 |
. . . . . 6
| |
| 19 | 14, 17, 18 | 3eqtr3g 2679 |
. . . . 5
|
| 20 | 13, 19 | impbii 199 |
. . . 4
|
| 21 | 20 | necon3bii 2846 |
. . 3
|
| 22 | df-rex 2918 |
. . . 4
| |
| 23 | rneq 5351 |
. . . . . . . . . 10
| |
| 24 | vex 3203 |
. . . . . . . . . . . 12
| |
| 25 | 24 | snnz 4309 |
. . . . . . . . . . 11
|
| 26 | rnxp 5564 |
. . . . . . . . . . 11
| |
| 27 | 25, 26 | ax-mp 5 |
. . . . . . . . . 10
|
| 28 | 23, 17, 27 | 3eqtr3g 2679 |
. . . . . . . . 9
|
| 29 | sneq 4187 |
. . . . . . . . . . 11
| |
| 30 | 29 | xpeq1d 5138 |
. . . . . . . . . 10
|
| 31 | xpeq2 5129 |
. . . . . . . . . 10
| |
| 32 | 30, 31 | eqtrd 2656 |
. . . . . . . . 9
|
| 33 | 28, 32 | impbii 199 |
. . . . . . . 8
|
| 34 | equcom 1945 |
. . . . . . . 8
| |
| 35 | 33, 34 | bitri 264 |
. . . . . . 7
|
| 36 | 35 | anbi2i 730 |
. . . . . 6
|
| 37 | ancom 466 |
. . . . . 6
| |
| 38 | 36, 37 | bitri 264 |
. . . . 5
|
| 39 | 38 | exbii 1774 |
. . . 4
|
| 40 | elequ1 1997 |
. . . . 5
| |
| 41 | 2, 40 | ceqsexv 3242 |
. . . 4
|
| 42 | 22, 39, 41 | 3bitrri 287 |
. . 3
|
| 43 | 21, 42 | anbi12i 733 |
. 2
|
| 44 | 8, 10, 43 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 |
| This theorem is referenced by: dfac5lem5 8950 |
| Copyright terms: Public domain | W3C validator |