MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac5lem3 Structured version   Visualization version   Unicode version

Theorem dfac5lem3 8948
Description: Lemma for dfac5 8951. (Contributed by NM, 12-Apr-2004.)
Hypothesis
Ref Expression
dfac5lem.1  |-  A  =  { u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }
Assertion
Ref Expression
dfac5lem3  |-  ( ( { w }  X.  w )  e.  A  <->  ( w  =/=  (/)  /\  w  e.  h ) )
Distinct variable groups:    w, u, t, h    w, A
Allowed substitution hints:    A( u, t, h)

Proof of Theorem dfac5lem3
StepHypRef Expression
1 snex 4908 . . . 4  |-  { w }  e.  _V
2 vex 3203 . . . 4  |-  w  e. 
_V
31, 2xpex 6962 . . 3  |-  ( { w }  X.  w
)  e.  _V
4 neeq1 2856 . . . 4  |-  ( u  =  ( { w }  X.  w )  -> 
( u  =/=  (/)  <->  ( {
w }  X.  w
)  =/=  (/) ) )
5 eqeq1 2626 . . . . 5  |-  ( u  =  ( { w }  X.  w )  -> 
( u  =  ( { t }  X.  t )  <->  ( {
w }  X.  w
)  =  ( { t }  X.  t
) ) )
65rexbidv 3052 . . . 4  |-  ( u  =  ( { w }  X.  w )  -> 
( E. t  e.  h  u  =  ( { t }  X.  t )  <->  E. t  e.  h  ( {
w }  X.  w
)  =  ( { t }  X.  t
) ) )
74, 6anbi12d 747 . . 3  |-  ( u  =  ( { w }  X.  w )  -> 
( ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) )  <->  ( ( { w }  X.  w )  =/=  (/)  /\  E. t  e.  h  ( { w }  X.  w )  =  ( { t }  X.  t ) ) ) )
83, 7elab 3350 . 2  |-  ( ( { w }  X.  w )  e.  {
u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }  <-> 
( ( { w }  X.  w )  =/=  (/)  /\  E. t  e.  h  ( { w }  X.  w )  =  ( { t }  X.  t ) ) )
9 dfac5lem.1 . . 3  |-  A  =  { u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) }
109eleq2i 2693 . 2  |-  ( ( { w }  X.  w )  e.  A  <->  ( { w }  X.  w )  e.  {
u  |  ( u  =/=  (/)  /\  E. t  e.  h  u  =  ( { t }  X.  t ) ) } )
11 xpeq2 5129 . . . . . 6  |-  ( w  =  (/)  ->  ( { w }  X.  w
)  =  ( { w }  X.  (/) ) )
12 xp0 5552 . . . . . 6  |-  ( { w }  X.  (/) )  =  (/)
1311, 12syl6eq 2672 . . . . 5  |-  ( w  =  (/)  ->  ( { w }  X.  w
)  =  (/) )
14 rneq 5351 . . . . . 6  |-  ( ( { w }  X.  w )  =  (/)  ->  ran  ( { w }  X.  w )  =  ran  (/) )
152snnz 4309 . . . . . . 7  |-  { w }  =/=  (/)
16 rnxp 5564 . . . . . . 7  |-  ( { w }  =/=  (/)  ->  ran  ( { w }  X.  w )  =  w )
1715, 16ax-mp 5 . . . . . 6  |-  ran  ( { w }  X.  w )  =  w
18 rn0 5377 . . . . . 6  |-  ran  (/)  =  (/)
1914, 17, 183eqtr3g 2679 . . . . 5  |-  ( ( { w }  X.  w )  =  (/)  ->  w  =  (/) )
2013, 19impbii 199 . . . 4  |-  ( w  =  (/)  <->  ( { w }  X.  w )  =  (/) )
2120necon3bii 2846 . . 3  |-  ( w  =/=  (/)  <->  ( { w }  X.  w )  =/=  (/) )
22 df-rex 2918 . . . 4  |-  ( E. t  e.  h  ( { w }  X.  w )  =  ( { t }  X.  t )  <->  E. t
( t  e.  h  /\  ( { w }  X.  w )  =  ( { t }  X.  t ) ) )
23 rneq 5351 . . . . . . . . . 10  |-  ( ( { w }  X.  w )  =  ( { t }  X.  t )  ->  ran  ( { w }  X.  w )  =  ran  ( { t }  X.  t ) )
24 vex 3203 . . . . . . . . . . . 12  |-  t  e. 
_V
2524snnz 4309 . . . . . . . . . . 11  |-  { t }  =/=  (/)
26 rnxp 5564 . . . . . . . . . . 11  |-  ( { t }  =/=  (/)  ->  ran  ( { t }  X.  t )  =  t )
2725, 26ax-mp 5 . . . . . . . . . 10  |-  ran  ( { t }  X.  t )  =  t
2823, 17, 273eqtr3g 2679 . . . . . . . . 9  |-  ( ( { w }  X.  w )  =  ( { t }  X.  t )  ->  w  =  t )
29 sneq 4187 . . . . . . . . . . 11  |-  ( w  =  t  ->  { w }  =  { t } )
3029xpeq1d 5138 . . . . . . . . . 10  |-  ( w  =  t  ->  ( { w }  X.  w )  =  ( { t }  X.  w ) )
31 xpeq2 5129 . . . . . . . . . 10  |-  ( w  =  t  ->  ( { t }  X.  w )  =  ( { t }  X.  t ) )
3230, 31eqtrd 2656 . . . . . . . . 9  |-  ( w  =  t  ->  ( { w }  X.  w )  =  ( { t }  X.  t ) )
3328, 32impbii 199 . . . . . . . 8  |-  ( ( { w }  X.  w )  =  ( { t }  X.  t )  <->  w  =  t )
34 equcom 1945 . . . . . . . 8  |-  ( w  =  t  <->  t  =  w )
3533, 34bitri 264 . . . . . . 7  |-  ( ( { w }  X.  w )  =  ( { t }  X.  t )  <->  t  =  w )
3635anbi2i 730 . . . . . 6  |-  ( ( t  e.  h  /\  ( { w }  X.  w )  =  ( { t }  X.  t ) )  <->  ( t  e.  h  /\  t  =  w ) )
37 ancom 466 . . . . . 6  |-  ( ( t  e.  h  /\  t  =  w )  <->  ( t  =  w  /\  t  e.  h )
)
3836, 37bitri 264 . . . . 5  |-  ( ( t  e.  h  /\  ( { w }  X.  w )  =  ( { t }  X.  t ) )  <->  ( t  =  w  /\  t  e.  h ) )
3938exbii 1774 . . . 4  |-  ( E. t ( t  e.  h  /\  ( { w }  X.  w
)  =  ( { t }  X.  t
) )  <->  E. t
( t  =  w  /\  t  e.  h
) )
40 elequ1 1997 . . . . 5  |-  ( t  =  w  ->  (
t  e.  h  <->  w  e.  h ) )
412, 40ceqsexv 3242 . . . 4  |-  ( E. t ( t  =  w  /\  t  e.  h )  <->  w  e.  h )
4222, 39, 413bitrri 287 . . 3  |-  ( w  e.  h  <->  E. t  e.  h  ( {
w }  X.  w
)  =  ( { t }  X.  t
) )
4321, 42anbi12i 733 . 2  |-  ( ( w  =/=  (/)  /\  w  e.  h )  <->  ( ( { w }  X.  w )  =/=  (/)  /\  E. t  e.  h  ( { w }  X.  w )  =  ( { t }  X.  t ) ) )
448, 10, 433bitr4i 292 1  |-  ( ( { w }  X.  w )  e.  A  <->  ( w  =/=  (/)  /\  w  e.  h ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   E.wrex 2913   (/)c0 3915   {csn 4177    X. cxp 5112   ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  dfac5lem5  8950
  Copyright terms: Public domain W3C validator