Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxypairf1o Structured version   Visualization version   Unicode version

Theorem rmxypairf1o 37476
Description: The function used to extract rational and irrational parts in df-rmx 37466 and df-rmy 37467 in fact achieves a one-to-one mapping from the quadratic irrationals to pairs of integers. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmxypairf1o  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) : ( NN0 
X.  ZZ ) -1-1-onto-> { a  |  E. c  e. 
NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  d
) ) } )
Distinct variable group:    b, c, d, a, A

Proof of Theorem rmxypairf1o
StepHypRef Expression
1 ovex 6678 . . . 4  |-  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) )  e.  _V
2 eqid 2622 . . . 4  |-  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )  =  ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) )
31, 2fnmpti 6022 . . 3  |-  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )  Fn  ( NN0  X.  ZZ )
43a1i 11 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )  Fn  ( NN0 
X.  ZZ ) )
5 vex 3203 . . . . . . . . . 10  |-  c  e. 
_V
6 vex 3203 . . . . . . . . . 10  |-  d  e. 
_V
75, 6op1std 7178 . . . . . . . . 9  |-  ( b  =  <. c ,  d
>.  ->  ( 1st `  b
)  =  c )
85, 6op2ndd 7179 . . . . . . . . . 10  |-  ( b  =  <. c ,  d
>.  ->  ( 2nd `  b
)  =  d )
98oveq2d 6666 . . . . . . . . 9  |-  ( b  =  <. c ,  d
>.  ->  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) )  =  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  d
) )
107, 9oveq12d 6668 . . . . . . . 8  |-  ( b  =  <. c ,  d
>.  ->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) )  =  ( c  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  d ) ) )
1110eqeq2d 2632 . . . . . . 7  |-  ( b  =  <. c ,  d
>.  ->  ( a  =  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) )  <->  a  =  ( c  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  d ) ) ) )
1211rexxp 5264 . . . . . 6  |-  ( E. b  e.  ( NN0 
X.  ZZ ) a  =  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) )  <->  E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  d ) ) )
1312bicomi 214 . . . . 5  |-  ( E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  d ) )  <->  E. b  e.  ( NN0  X.  ZZ ) a  =  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )
1413a1i 11 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  d ) )  <->  E. b  e.  ( NN0  X.  ZZ ) a  =  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) )
1514abbidv 2741 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  { a  |  E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  d ) ) }  =  {
a  |  E. b  e.  ( NN0  X.  ZZ ) a  =  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) } )
162rnmpt 5371 . . 3  |-  ran  (
b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) )  =  { a  |  E. b  e.  ( NN0  X.  ZZ ) a  =  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) }
1715, 16syl6reqr 2675 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  ran  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )  =  {
a  |  E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  d ) ) } )
18 fveq2 6191 . . . . . . . 8  |-  ( b  =  c  ->  ( 1st `  b )  =  ( 1st `  c
) )
19 fveq2 6191 . . . . . . . . 9  |-  ( b  =  c  ->  ( 2nd `  b )  =  ( 2nd `  c
) )
2019oveq2d 6666 . . . . . . . 8  |-  ( b  =  c  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  c ) ) )
2118, 20oveq12d 6668 . . . . . . 7  |-  ( b  =  c  ->  (
( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) )  =  ( ( 1st `  c
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  c
) ) ) )
22 ovex 6678 . . . . . . 7  |-  ( ( 1st `  c )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  c ) ) )  e.  _V
2321, 2, 22fvmpt 6282 . . . . . 6  |-  ( c  e.  ( NN0  X.  ZZ )  ->  ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 c )  =  ( ( 1st `  c
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  c
) ) ) )
2423ad2antrl 764 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  c
)  =  ( ( 1st `  c )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  c ) ) ) )
25 fveq2 6191 . . . . . . . 8  |-  ( b  =  d  ->  ( 1st `  b )  =  ( 1st `  d
) )
26 fveq2 6191 . . . . . . . . 9  |-  ( b  =  d  ->  ( 2nd `  b )  =  ( 2nd `  d
) )
2726oveq2d 6666 . . . . . . . 8  |-  ( b  =  d  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  d ) ) )
2825, 27oveq12d 6668 . . . . . . 7  |-  ( b  =  d  ->  (
( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) )  =  ( ( 1st `  d
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  d
) ) ) )
29 ovex 6678 . . . . . . 7  |-  ( ( 1st `  d )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  d ) ) )  e.  _V
3028, 2, 29fvmpt 6282 . . . . . 6  |-  ( d  e.  ( NN0  X.  ZZ )  ->  ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 d )  =  ( ( 1st `  d
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  d
) ) ) )
3130ad2antll 765 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  d
)  =  ( ( 1st `  d )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  d ) ) ) )
3224, 31eqeq12d 2637 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 c )  =  ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  d )  <-> 
( ( 1st `  c
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  c
) ) )  =  ( ( 1st `  d
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  d
) ) ) ) )
33 rmspecsqrtnq 37470 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  ( CC  \  QQ ) )
3433adantr 481 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  ( CC 
\  QQ ) )
35 nn0ssq 11796 . . . . . . . 8  |-  NN0  C_  QQ
36 xp1st 7198 . . . . . . . . 9  |-  ( c  e.  ( NN0  X.  ZZ )  ->  ( 1st `  c )  e.  NN0 )
3736ad2antrl 764 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 1st `  c
)  e.  NN0 )
3835, 37sseldi 3601 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 1st `  c
)  e.  QQ )
39 xp2nd 7199 . . . . . . . . 9  |-  ( c  e.  ( NN0  X.  ZZ )  ->  ( 2nd `  c )  e.  ZZ )
4039ad2antrl 764 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 2nd `  c
)  e.  ZZ )
41 zq 11794 . . . . . . . 8  |-  ( ( 2nd `  c )  e.  ZZ  ->  ( 2nd `  c )  e.  QQ )
4240, 41syl 17 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 2nd `  c
)  e.  QQ )
43 xp1st 7198 . . . . . . . . 9  |-  ( d  e.  ( NN0  X.  ZZ )  ->  ( 1st `  d )  e.  NN0 )
4443ad2antll 765 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 1st `  d
)  e.  NN0 )
4535, 44sseldi 3601 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 1st `  d
)  e.  QQ )
46 xp2nd 7199 . . . . . . . . 9  |-  ( d  e.  ( NN0  X.  ZZ )  ->  ( 2nd `  d )  e.  ZZ )
4746ad2antll 765 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 2nd `  d
)  e.  ZZ )
48 zq 11794 . . . . . . . 8  |-  ( ( 2nd `  d )  e.  ZZ  ->  ( 2nd `  d )  e.  QQ )
4947, 48syl 17 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 2nd `  d
)  e.  QQ )
50 qirropth 37473 . . . . . . 7  |-  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  ( CC 
\  QQ )  /\  ( ( 1st `  c
)  e.  QQ  /\  ( 2nd `  c )  e.  QQ )  /\  ( ( 1st `  d
)  e.  QQ  /\  ( 2nd `  d )  e.  QQ ) )  ->  ( ( ( 1st `  c )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  c ) ) )  =  ( ( 1st `  d )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  d ) ) )  <->  ( ( 1st `  c )  =  ( 1st `  d )  /\  ( 2nd `  c
)  =  ( 2nd `  d ) ) ) )
5134, 38, 42, 45, 49, 50syl122anc 1335 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( ( 1st `  c )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  c ) ) )  =  ( ( 1st `  d )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  d ) ) )  <->  ( ( 1st `  c )  =  ( 1st `  d )  /\  ( 2nd `  c
)  =  ( 2nd `  d ) ) ) )
5251biimpd 219 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( ( 1st `  c )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  c ) ) )  =  ( ( 1st `  d )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  d ) ) )  ->  ( ( 1st `  c )  =  ( 1st `  d
)  /\  ( 2nd `  c )  =  ( 2nd `  d ) ) ) )
53 xpopth 7207 . . . . . 6  |-  ( ( c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) )  -> 
( ( ( 1st `  c )  =  ( 1st `  d )  /\  ( 2nd `  c
)  =  ( 2nd `  d ) )  <->  c  =  d ) )
5453adantl 482 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( ( 1st `  c )  =  ( 1st `  d
)  /\  ( 2nd `  c )  =  ( 2nd `  d ) )  <->  c  =  d ) )
5552, 54sylibd 229 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( ( 1st `  c )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  c ) ) )  =  ( ( 1st `  d )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  d ) ) )  ->  c  =  d ) )
5632, 55sylbid 230 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 c )  =  ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  d )  ->  c  =  d ) )
5756ralrimivva 2971 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  A. c  e.  ( NN0  X.  ZZ ) A. d  e.  ( NN0  X.  ZZ ) ( ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  c
)  =  ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 d )  -> 
c  =  d ) )
58 dff1o6 6531 . 2  |-  ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) : ( NN0  X.  ZZ ) -1-1-onto-> { a  |  E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  d ) ) }  <->  ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )  Fn  ( NN0  X.  ZZ )  /\  ran  ( b  e.  ( NN0  X.  ZZ ) 
|->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) )  =  { a  |  E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  d ) ) }  /\  A. c  e.  ( NN0  X.  ZZ ) A. d  e.  ( NN0  X.  ZZ ) ( ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 c )  =  ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  d )  ->  c  =  d ) ) )
594, 17, 57, 58syl3anbrc 1246 1  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) : ( NN0 
X.  ZZ ) -1-1-onto-> { a  |  E. c  e. 
NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  d
) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    \ cdif 3571   <.cop 4183    |-> cmpt 4729    X. cxp 5112   ran crn 5115    Fn wfn 5883   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   CCcc 9934   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   QQcq 11788   ^cexp 12860   sqrcsqrt 13973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-numer 15443  df-denom 15444
This theorem is referenced by:  rmxyelxp  37477  rmxyval  37480
  Copyright terms: Public domain W3C validator