MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnen Structured version   Visualization version   Unicode version

Theorem difsnen 8042
Description: All decrements of a set are equinumerous. (Contributed by Stefan O'Rear, 19-Feb-2015.)
Assertion
Ref Expression
difsnen  |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  ( X  \  { A } )  ~~  ( X  \  { B }
) )

Proof of Theorem difsnen
StepHypRef Expression
1 difexg 4808 . . . . . 6  |-  ( X  e.  V  ->  ( X  \  { A }
)  e.  _V )
2 enrefg 7987 . . . . . 6  |-  ( ( X  \  { A } )  e.  _V  ->  ( X  \  { A } )  ~~  ( X  \  { A }
) )
31, 2syl 17 . . . . 5  |-  ( X  e.  V  ->  ( X  \  { A }
)  ~~  ( X  \  { A } ) )
433ad2ant1 1082 . . . 4  |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  ( X  \  { A } )  ~~  ( X  \  { A }
) )
5 sneq 4187 . . . . . 6  |-  ( A  =  B  ->  { A }  =  { B } )
65difeq2d 3728 . . . . 5  |-  ( A  =  B  ->  ( X  \  { A }
)  =  ( X 
\  { B }
) )
76breq2d 4665 . . . 4  |-  ( A  =  B  ->  (
( X  \  { A } )  ~~  ( X  \  { A }
)  <->  ( X  \  { A } )  ~~  ( X  \  { B } ) ) )
84, 7syl5ibcom 235 . . 3  |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  ( A  =  B  ->  ( X  \  { A } )  ~~  ( X  \  { B } ) ) )
98imp 445 . 2  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =  B )  ->  ( X  \  { A }
)  ~~  ( X  \  { B } ) )
10 simpl1 1064 . . . . . 6  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  X  e.  V )
11 difexg 4808 . . . . . 6  |-  ( ( X  \  { A } )  e.  _V  ->  ( ( X  \  { A } )  \  { B } )  e. 
_V )
12 enrefg 7987 . . . . . 6  |-  ( ( ( X  \  { A } )  \  { B } )  e.  _V  ->  ( ( X  \  { A } )  \  { B } )  ~~  ( ( X  \  { A } )  \  { B } ) )
1310, 1, 11, 124syl 19 . . . . 5  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  ( ( X  \  { A }
)  \  { B } )  ~~  (
( X  \  { A } )  \  { B } ) )
14 dif32 3891 . . . . 5  |-  ( ( X  \  { A } )  \  { B } )  =  ( ( X  \  { B } )  \  { A } )
1513, 14syl6breq 4694 . . . 4  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  ( ( X  \  { A }
)  \  { B } )  ~~  (
( X  \  { B } )  \  { A } ) )
16 simpl3 1066 . . . . 5  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  B  e.  X )
17 simpl2 1065 . . . . 5  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  A  e.  X )
18 en2sn 8037 . . . . 5  |-  ( ( B  e.  X  /\  A  e.  X )  ->  { B }  ~~  { A } )
1916, 17, 18syl2anc 693 . . . 4  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  { B }  ~~  { A }
)
20 incom 3805 . . . . . 6  |-  ( ( ( X  \  { A } )  \  { B } )  i^i  { B } )  =  ( { B }  i^i  ( ( X  \  { A } )  \  { B } ) )
21 disjdif 4040 . . . . . 6  |-  ( { B }  i^i  (
( X  \  { A } )  \  { B } ) )  =  (/)
2220, 21eqtri 2644 . . . . 5  |-  ( ( ( X  \  { A } )  \  { B } )  i^i  { B } )  =  (/)
2322a1i 11 . . . 4  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  ( (
( X  \  { A } )  \  { B } )  i^i  { B } )  =  (/) )
24 incom 3805 . . . . . 6  |-  ( ( ( X  \  { B } )  \  { A } )  i^i  { A } )  =  ( { A }  i^i  ( ( X  \  { B } )  \  { A } ) )
25 disjdif 4040 . . . . . 6  |-  ( { A }  i^i  (
( X  \  { B } )  \  { A } ) )  =  (/)
2624, 25eqtri 2644 . . . . 5  |-  ( ( ( X  \  { B } )  \  { A } )  i^i  { A } )  =  (/)
2726a1i 11 . . . 4  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  ( (
( X  \  { B } )  \  { A } )  i^i  { A } )  =  (/) )
28 unen 8040 . . . 4  |-  ( ( ( ( ( X 
\  { A }
)  \  { B } )  ~~  (
( X  \  { B } )  \  { A } )  /\  { B }  ~~  { A } )  /\  (
( ( ( X 
\  { A }
)  \  { B } )  i^i  { B } )  =  (/)  /\  ( ( ( X 
\  { B }
)  \  { A } )  i^i  { A } )  =  (/) ) )  ->  (
( ( X  \  { A } )  \  { B } )  u. 
{ B } ) 
~~  ( ( ( X  \  { B } )  \  { A } )  u.  { A } ) )
2915, 19, 23, 27, 28syl22anc 1327 . . 3  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  ( (
( X  \  { A } )  \  { B } )  u.  { B } )  ~~  (
( ( X  \  { B } )  \  { A } )  u. 
{ A } ) )
30 simpr 477 . . . . . 6  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  A  =/=  B )
3130necomd 2849 . . . . 5  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  B  =/=  A )
32 eldifsn 4317 . . . . 5  |-  ( B  e.  ( X  \  { A } )  <->  ( B  e.  X  /\  B  =/= 
A ) )
3316, 31, 32sylanbrc 698 . . . 4  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  B  e.  ( X  \  { A } ) )
34 difsnid 4341 . . . 4  |-  ( B  e.  ( X  \  { A } )  -> 
( ( ( X 
\  { A }
)  \  { B } )  u.  { B } )  =  ( X  \  { A } ) )
3533, 34syl 17 . . 3  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  ( (
( X  \  { A } )  \  { B } )  u.  { B } )  =  ( X  \  { A } ) )
36 eldifsn 4317 . . . . 5  |-  ( A  e.  ( X  \  { B } )  <->  ( A  e.  X  /\  A  =/= 
B ) )
3717, 30, 36sylanbrc 698 . . . 4  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  A  e.  ( X  \  { B } ) )
38 difsnid 4341 . . . 4  |-  ( A  e.  ( X  \  { B } )  -> 
( ( ( X 
\  { B }
)  \  { A } )  u.  { A } )  =  ( X  \  { B } ) )
3937, 38syl 17 . . 3  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  ( (
( X  \  { B } )  \  { A } )  u.  { A } )  =  ( X  \  { B } ) )
4029, 35, 393brtr3d 4684 . 2  |-  ( ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X
)  /\  A  =/=  B )  ->  ( X  \  { A } ) 
~~  ( X  \  { B } ) )
419, 40pm2.61dane 2881 1  |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  ( X  \  { A } )  ~~  ( X  \  { B }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   class class class wbr 4653    ~~ cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-1o 7560  df-er 7742  df-en 7956
This theorem is referenced by:  domdifsn  8043  domunsncan  8060  enfixsn  8069  infdifsn  8554  cda1dif  8998
  Copyright terms: Public domain W3C validator