| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difsnen | Structured version Visualization version Unicode version | ||
| Description: All decrements of a set are equinumerous. (Contributed by Stefan O'Rear, 19-Feb-2015.) |
| Ref | Expression |
|---|---|
| difsnen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexg 4808 |
. . . . . 6
| |
| 2 | enrefg 7987 |
. . . . . 6
| |
| 3 | 1, 2 | syl 17 |
. . . . 5
|
| 4 | 3 | 3ad2ant1 1082 |
. . . 4
|
| 5 | sneq 4187 |
. . . . . 6
| |
| 6 | 5 | difeq2d 3728 |
. . . . 5
|
| 7 | 6 | breq2d 4665 |
. . . 4
|
| 8 | 4, 7 | syl5ibcom 235 |
. . 3
|
| 9 | 8 | imp 445 |
. 2
|
| 10 | simpl1 1064 |
. . . . . 6
| |
| 11 | difexg 4808 |
. . . . . 6
| |
| 12 | enrefg 7987 |
. . . . . 6
| |
| 13 | 10, 1, 11, 12 | 4syl 19 |
. . . . 5
|
| 14 | dif32 3891 |
. . . . 5
| |
| 15 | 13, 14 | syl6breq 4694 |
. . . 4
|
| 16 | simpl3 1066 |
. . . . 5
| |
| 17 | simpl2 1065 |
. . . . 5
| |
| 18 | en2sn 8037 |
. . . . 5
| |
| 19 | 16, 17, 18 | syl2anc 693 |
. . . 4
|
| 20 | incom 3805 |
. . . . . 6
| |
| 21 | disjdif 4040 |
. . . . . 6
| |
| 22 | 20, 21 | eqtri 2644 |
. . . . 5
|
| 23 | 22 | a1i 11 |
. . . 4
|
| 24 | incom 3805 |
. . . . . 6
| |
| 25 | disjdif 4040 |
. . . . . 6
| |
| 26 | 24, 25 | eqtri 2644 |
. . . . 5
|
| 27 | 26 | a1i 11 |
. . . 4
|
| 28 | unen 8040 |
. . . 4
| |
| 29 | 15, 19, 23, 27, 28 | syl22anc 1327 |
. . 3
|
| 30 | simpr 477 |
. . . . . 6
| |
| 31 | 30 | necomd 2849 |
. . . . 5
|
| 32 | eldifsn 4317 |
. . . . 5
| |
| 33 | 16, 31, 32 | sylanbrc 698 |
. . . 4
|
| 34 | difsnid 4341 |
. . . 4
| |
| 35 | 33, 34 | syl 17 |
. . 3
|
| 36 | eldifsn 4317 |
. . . . 5
| |
| 37 | 17, 30, 36 | sylanbrc 698 |
. . . 4
|
| 38 | difsnid 4341 |
. . . 4
| |
| 39 | 37, 38 | syl 17 |
. . 3
|
| 40 | 29, 35, 39 | 3brtr3d 4684 |
. 2
|
| 41 | 9, 40 | pm2.61dane 2881 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-suc 5729 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-1o 7560 df-er 7742 df-en 7956 |
| This theorem is referenced by: domdifsn 8043 domunsncan 8060 enfixsn 8069 infdifsn 8554 cda1dif 8998 |
| Copyright terms: Public domain | W3C validator |