| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enfixsn | Structured version Visualization version Unicode version | ||
| Description: Given two equipollent sets, a bijection can always be chosen which fixes a single point. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| Ref | Expression |
|---|---|
| enfixsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1063 |
. . 3
| |
| 2 | bren 7964 |
. . 3
| |
| 3 | 1, 2 | sylib 208 |
. 2
|
| 4 | relen 7960 |
. . . . . . . 8
| |
| 5 | 4 | brrelex2i 5159 |
. . . . . . 7
|
| 6 | 5 | 3ad2ant3 1084 |
. . . . . 6
|
| 7 | 6 | adantr 481 |
. . . . 5
|
| 8 | f1of 6137 |
. . . . . . 7
| |
| 9 | 8 | adantl 482 |
. . . . . 6
|
| 10 | simpl1 1064 |
. . . . . 6
| |
| 11 | 9, 10 | ffvelrnd 6360 |
. . . . 5
|
| 12 | simpl2 1065 |
. . . . 5
| |
| 13 | difsnen 8042 |
. . . . 5
| |
| 14 | 7, 11, 12, 13 | syl3anc 1326 |
. . . 4
|
| 15 | bren 7964 |
. . . 4
| |
| 16 | 14, 15 | sylib 208 |
. . 3
|
| 17 | fvex 6201 |
. . . . . . . . . . 11
| |
| 18 | 17 | a1i 11 |
. . . . . . . . . 10
|
| 19 | simpl2 1065 |
. . . . . . . . . 10
| |
| 20 | f1osng 6177 |
. . . . . . . . . 10
| |
| 21 | 18, 19, 20 | syl2anc 693 |
. . . . . . . . 9
|
| 22 | simprr 796 |
. . . . . . . . 9
| |
| 23 | disjdif 4040 |
. . . . . . . . . 10
| |
| 24 | 23 | a1i 11 |
. . . . . . . . 9
|
| 25 | disjdif 4040 |
. . . . . . . . . 10
| |
| 26 | 25 | a1i 11 |
. . . . . . . . 9
|
| 27 | f1oun 6156 |
. . . . . . . . 9
| |
| 28 | 21, 22, 24, 26, 27 | syl22anc 1327 |
. . . . . . . 8
|
| 29 | 8 | ad2antrl 764 |
. . . . . . . . . . 11
|
| 30 | simpl1 1064 |
. . . . . . . . . . 11
| |
| 31 | 29, 30 | ffvelrnd 6360 |
. . . . . . . . . 10
|
| 32 | uncom 3757 |
. . . . . . . . . . 11
| |
| 33 | difsnid 4341 |
. . . . . . . . . . 11
| |
| 34 | 32, 33 | syl5eq 2668 |
. . . . . . . . . 10
|
| 35 | 31, 34 | syl 17 |
. . . . . . . . 9
|
| 36 | uncom 3757 |
. . . . . . . . . . 11
| |
| 37 | difsnid 4341 |
. . . . . . . . . . 11
| |
| 38 | 36, 37 | syl5eq 2668 |
. . . . . . . . . 10
|
| 39 | 19, 38 | syl 17 |
. . . . . . . . 9
|
| 40 | f1oeq23 6130 |
. . . . . . . . 9
| |
| 41 | 35, 39, 40 | syl2anc 693 |
. . . . . . . 8
|
| 42 | 28, 41 | mpbid 222 |
. . . . . . 7
|
| 43 | simprl 794 |
. . . . . . 7
| |
| 44 | f1oco 6159 |
. . . . . . 7
| |
| 45 | 42, 43, 44 | syl2anc 693 |
. . . . . 6
|
| 46 | f1ofn 6138 |
. . . . . . . . 9
| |
| 47 | 46 | ad2antrl 764 |
. . . . . . . 8
|
| 48 | fvco2 6273 |
. . . . . . . 8
| |
| 49 | 47, 30, 48 | syl2anc 693 |
. . . . . . 7
|
| 50 | f1ofn 6138 |
. . . . . . . . 9
| |
| 51 | 21, 50 | syl 17 |
. . . . . . . 8
|
| 52 | f1ofn 6138 |
. . . . . . . . 9
| |
| 53 | 52 | ad2antll 765 |
. . . . . . . 8
|
| 54 | 17 | snid 4208 |
. . . . . . . . 9
|
| 55 | 54 | a1i 11 |
. . . . . . . 8
|
| 56 | fvun1 6269 |
. . . . . . . 8
| |
| 57 | 51, 53, 24, 55, 56 | syl112anc 1330 |
. . . . . . 7
|
| 58 | fvsng 6447 |
. . . . . . . 8
| |
| 59 | 18, 19, 58 | syl2anc 693 |
. . . . . . 7
|
| 60 | 49, 57, 59 | 3eqtrd 2660 |
. . . . . 6
|
| 61 | snex 4908 |
. . . . . . . . 9
| |
| 62 | vex 3203 |
. . . . . . . . 9
| |
| 63 | 61, 62 | unex 6956 |
. . . . . . . 8
|
| 64 | vex 3203 |
. . . . . . . 8
| |
| 65 | 63, 64 | coex 7118 |
. . . . . . 7
|
| 66 | f1oeq1 6127 |
. . . . . . . 8
| |
| 67 | fveq1 6190 |
. . . . . . . . 9
| |
| 68 | 67 | eqeq1d 2624 |
. . . . . . . 8
|
| 69 | 66, 68 | anbi12d 747 |
. . . . . . 7
|
| 70 | 65, 69 | spcev 3300 |
. . . . . 6
|
| 71 | 45, 60, 70 | syl2anc 693 |
. . . . 5
|
| 72 | 71 | expr 643 |
. . . 4
|
| 73 | 72 | exlimdv 1861 |
. . 3
|
| 74 | 16, 73 | mpd 15 |
. 2
|
| 75 | 3, 74 | exlimddv 1863 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-1o 7560 df-er 7742 df-en 7956 |
| This theorem is referenced by: mapfien2 8314 |
| Copyright terms: Public domain | W3C validator |