MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdifsn Structured version   Visualization version   Unicode version

Theorem infdifsn 8554
Description: Removing a singleton from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
infdifsn  |-  ( om  ~<_  A  ->  ( A  \  { B } ) 
~~  A )

Proof of Theorem infdifsn
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 brdomi 7966 . . . 4  |-  ( om  ~<_  A  ->  E. f 
f : om -1-1-> A
)
21adantr 481 . . 3  |-  ( ( om  ~<_  A  /\  B  e.  A )  ->  E. f 
f : om -1-1-> A
)
3 reldom 7961 . . . . . . 7  |-  Rel  ~<_
43brrelex2i 5159 . . . . . 6  |-  ( om  ~<_  A  ->  A  e.  _V )
54ad2antrr 762 . . . . 5  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  A  e.  _V )
6 simplr 792 . . . . 5  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  B  e.  A )
7 f1f 6101 . . . . . . 7  |-  ( f : om -1-1-> A  -> 
f : om --> A )
87adantl 482 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  f : om
--> A )
9 peano1 7085 . . . . . 6  |-  (/)  e.  om
10 ffvelrn 6357 . . . . . 6  |-  ( ( f : om --> A  /\  (/) 
e.  om )  ->  (
f `  (/) )  e.  A )
118, 9, 10sylancl 694 . . . . 5  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( f `  (/) )  e.  A
)
12 difsnen 8042 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  A  /\  ( f `  (/) )  e.  A )  ->  ( A  \  { B }
)  ~~  ( A  \  { ( f `  (/) ) } ) )
135, 6, 11, 12syl3anc 1326 . . . 4  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( A  \  { B } ) 
~~  ( A  \  { ( f `  (/) ) } ) )
14 vex 3203 . . . . . . . . . 10  |-  f  e. 
_V
15 f1f1orn 6148 . . . . . . . . . . 11  |-  ( f : om -1-1-> A  -> 
f : om -1-1-onto-> ran  f )
1615adantl 482 . . . . . . . . . 10  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  f : om
-1-1-onto-> ran  f )
17 f1oen3g 7971 . . . . . . . . . 10  |-  ( ( f  e.  _V  /\  f : om -1-1-onto-> ran  f )  ->  om  ~~  ran  f )
1814, 16, 17sylancr 695 . . . . . . . . 9  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  om  ~~  ran  f )
1918ensymd 8007 . . . . . . . 8  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ran  f  ~~  om )
203brrelexi 5158 . . . . . . . . . . 11  |-  ( om  ~<_  A  ->  om  e.  _V )
2120ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  om  e.  _V )
22 limom 7080 . . . . . . . . . . 11  |-  Lim  om
2322limenpsi 8135 . . . . . . . . . 10  |-  ( om  e.  _V  ->  om  ~~  ( om  \  { (/) } ) )
2421, 23syl 17 . . . . . . . . 9  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  om  ~~  ( om  \  { (/) } ) )
2514resex 5443 . . . . . . . . . . 11  |-  ( f  |`  ( om  \  { (/)
} ) )  e. 
_V
26 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  f : om
-1-1-> A )
27 difss 3737 . . . . . . . . . . . 12  |-  ( om 
\  { (/) } ) 
C_  om
28 f1ores 6151 . . . . . . . . . . . 12  |-  ( ( f : om -1-1-> A  /\  ( om  \  { (/)
} )  C_  om )  ->  ( f  |`  ( om  \  { (/) } ) ) : ( om 
\  { (/) } ) -1-1-onto-> ( f " ( om 
\  { (/) } ) ) )
2926, 27, 28sylancl 694 . . . . . . . . . . 11  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( f  |`  ( om  \  { (/)
} ) ) : ( om  \  { (/)
} ) -1-1-onto-> ( f " ( om  \  { (/) } ) ) )
30 f1oen3g 7971 . . . . . . . . . . 11  |-  ( ( ( f  |`  ( om  \  { (/) } ) )  e.  _V  /\  ( f  |`  ( om  \  { (/) } ) ) : ( om 
\  { (/) } ) -1-1-onto-> ( f " ( om 
\  { (/) } ) ) )  ->  ( om  \  { (/) } ) 
~~  ( f "
( om  \  { (/)
} ) ) )
3125, 29, 30sylancr 695 . . . . . . . . . 10  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( om  \  { (/) } )  ~~  ( f " ( om  \  { (/) } ) ) )
32 f1orn 6147 . . . . . . . . . . . . 13  |-  ( f : om -1-1-onto-> ran  f  <->  ( f  Fn  om  /\  Fun  `' f ) )
3332simprbi 480 . . . . . . . . . . . 12  |-  ( f : om -1-1-onto-> ran  f  ->  Fun  `' f )
34 imadif 5973 . . . . . . . . . . . 12  |-  ( Fun  `' f  ->  ( f
" ( om  \  { (/)
} ) )  =  ( ( f " om )  \  (
f " { (/) } ) ) )
3516, 33, 343syl 18 . . . . . . . . . . 11  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( f " ( om  \  { (/)
} ) )  =  ( ( f " om )  \  (
f " { (/) } ) ) )
36 f1fn 6102 . . . . . . . . . . . . . 14  |-  ( f : om -1-1-> A  -> 
f  Fn  om )
3736adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  f  Fn  om )
38 fnima 6010 . . . . . . . . . . . . 13  |-  ( f  Fn  om  ->  (
f " om )  =  ran  f )
3937, 38syl 17 . . . . . . . . . . . 12  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( f " om )  =  ran  f )
40 fnsnfv 6258 . . . . . . . . . . . . . 14  |-  ( ( f  Fn  om  /\  (/) 
e.  om )  ->  { ( f `  (/) ) }  =  ( f " { (/) } ) )
4137, 9, 40sylancl 694 . . . . . . . . . . . . 13  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  { (
f `  (/) ) }  =  ( f " { (/) } ) )
4241eqcomd 2628 . . . . . . . . . . . 12  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( f " { (/) } )  =  { ( f `  (/) ) } )
4339, 42difeq12d 3729 . . . . . . . . . . 11  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( (
f " om )  \  ( f " { (/) } ) )  =  ( ran  f  \  { ( f `  (/) ) } ) )
4435, 43eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( f " ( om  \  { (/)
} ) )  =  ( ran  f  \  { ( f `  (/) ) } ) )
4531, 44breqtrd 4679 . . . . . . . . 9  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( om  \  { (/) } )  ~~  ( ran  f  \  {
( f `  (/) ) } ) )
46 entr 8008 . . . . . . . . 9  |-  ( ( om  ~~  ( om 
\  { (/) } )  /\  ( om  \  { (/)
} )  ~~  ( ran  f  \  { ( f `  (/) ) } ) )  ->  om  ~~  ( ran  f  \  {
( f `  (/) ) } ) )
4724, 45, 46syl2anc 693 . . . . . . . 8  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  om  ~~  ( ran  f  \  { ( f `  (/) ) } ) )
48 entr 8008 . . . . . . . 8  |-  ( ( ran  f  ~~  om  /\ 
om  ~~  ( ran  f  \  { ( f `
 (/) ) } ) )  ->  ran  f  ~~  ( ran  f  \  {
( f `  (/) ) } ) )
4919, 47, 48syl2anc 693 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ran  f  ~~  ( ran  f  \  {
( f `  (/) ) } ) )
50 difexg 4808 . . . . . . . 8  |-  ( A  e.  _V  ->  ( A  \  ran  f )  e.  _V )
51 enrefg 7987 . . . . . . . 8  |-  ( ( A  \  ran  f
)  e.  _V  ->  ( A  \  ran  f
)  ~~  ( A  \  ran  f ) )
525, 50, 513syl 18 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( A  \  ran  f )  ~~  ( A  \  ran  f
) )
53 disjdif 4040 . . . . . . . 8  |-  ( ran  f  i^i  ( A 
\  ran  f )
)  =  (/)
5453a1i 11 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( ran  f  i^i  ( A  \  ran  f ) )  =  (/) )
55 difss 3737 . . . . . . . . . 10  |-  ( ran  f  \  { ( f `  (/) ) } )  C_  ran  f
56 ssrin 3838 . . . . . . . . . 10  |-  ( ( ran  f  \  {
( f `  (/) ) } )  C_  ran  f  -> 
( ( ran  f  \  { ( f `  (/) ) } )  i^i  ( A  \  ran  f ) )  C_  ( ran  f  i^i  ( A  \  ran  f ) ) )
5755, 56ax-mp 5 . . . . . . . . 9  |-  ( ( ran  f  \  {
( f `  (/) ) } )  i^i  ( A 
\  ran  f )
)  C_  ( ran  f  i^i  ( A  \  ran  f ) )
58 sseq0 3975 . . . . . . . . 9  |-  ( ( ( ( ran  f  \  { ( f `  (/) ) } )  i^i  ( A  \  ran  f ) )  C_  ( ran  f  i^i  ( A  \  ran  f ) )  /\  ( ran  f  i^i  ( A 
\  ran  f )
)  =  (/) )  -> 
( ( ran  f  \  { ( f `  (/) ) } )  i^i  ( A  \  ran  f ) )  =  (/) )
5957, 53, 58mp2an 708 . . . . . . . 8  |-  ( ( ran  f  \  {
( f `  (/) ) } )  i^i  ( A 
\  ran  f )
)  =  (/)
6059a1i 11 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( ( ran  f  \  { ( f `  (/) ) } )  i^i  ( A 
\  ran  f )
)  =  (/) )
61 unen 8040 . . . . . . 7  |-  ( ( ( ran  f  ~~  ( ran  f  \  {
( f `  (/) ) } )  /\  ( A 
\  ran  f )  ~~  ( A  \  ran  f ) )  /\  ( ( ran  f  i^i  ( A  \  ran  f ) )  =  (/)  /\  ( ( ran  f  \  { ( f `  (/) ) } )  i^i  ( A 
\  ran  f )
)  =  (/) ) )  ->  ( ran  f  u.  ( A  \  ran  f ) )  ~~  ( ( ran  f  \  { ( f `  (/) ) } )  u.  ( A  \  ran  f ) ) )
6249, 52, 54, 60, 61syl22anc 1327 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( ran  f  u.  ( A  \  ran  f ) ) 
~~  ( ( ran  f  \  { ( f `  (/) ) } )  u.  ( A 
\  ran  f )
) )
63 frn 6053 . . . . . . . 8  |-  ( f : om --> A  ->  ran  f  C_  A )
648, 63syl 17 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ran  f  C_  A )
65 undif 4049 . . . . . . 7  |-  ( ran  f  C_  A  <->  ( ran  f  u.  ( A  \  ran  f ) )  =  A )
6664, 65sylib 208 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( ran  f  u.  ( A  \  ran  f ) )  =  A )
67 uncom 3757 . . . . . . 7  |-  ( ( ran  f  \  {
( f `  (/) ) } )  u.  ( A 
\  ran  f )
)  =  ( ( A  \  ran  f
)  u.  ( ran  f  \  { ( f `  (/) ) } ) )
68 eldifn 3733 . . . . . . . . . . 11  |-  ( ( f `  (/) )  e.  ( A  \  ran  f )  ->  -.  ( f `  (/) )  e. 
ran  f )
69 fnfvelrn 6356 . . . . . . . . . . . 12  |-  ( ( f  Fn  om  /\  (/) 
e.  om )  ->  (
f `  (/) )  e. 
ran  f )
7037, 9, 69sylancl 694 . . . . . . . . . . 11  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( f `  (/) )  e.  ran  f )
7168, 70nsyl3 133 . . . . . . . . . 10  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  -.  (
f `  (/) )  e.  ( A  \  ran  f ) )
72 disjsn 4246 . . . . . . . . . 10  |-  ( ( ( A  \  ran  f )  i^i  {
( f `  (/) ) } )  =  (/)  <->  -.  (
f `  (/) )  e.  ( A  \  ran  f ) )
7371, 72sylibr 224 . . . . . . . . 9  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( ( A  \  ran  f )  i^i  { ( f `
 (/) ) } )  =  (/) )
74 undif4 4035 . . . . . . . . 9  |-  ( ( ( A  \  ran  f )  i^i  {
( f `  (/) ) } )  =  (/)  ->  (
( A  \  ran  f )  u.  ( ran  f  \  { ( f `  (/) ) } ) )  =  ( ( ( A  \  ran  f )  u.  ran  f )  \  {
( f `  (/) ) } ) )
7573, 74syl 17 . . . . . . . 8  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( ( A  \  ran  f )  u.  ( ran  f  \  { ( f `  (/) ) } ) )  =  ( ( ( A  \  ran  f
)  u.  ran  f
)  \  { (
f `  (/) ) } ) )
76 uncom 3757 . . . . . . . . . 10  |-  ( ( A  \  ran  f
)  u.  ran  f
)  =  ( ran  f  u.  ( A 
\  ran  f )
)
7776, 66syl5eq 2668 . . . . . . . . 9  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( ( A  \  ran  f )  u.  ran  f )  =  A )
7877difeq1d 3727 . . . . . . . 8  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( (
( A  \  ran  f )  u.  ran  f )  \  {
( f `  (/) ) } )  =  ( A 
\  { ( f `
 (/) ) } ) )
7975, 78eqtrd 2656 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( ( A  \  ran  f )  u.  ( ran  f  \  { ( f `  (/) ) } ) )  =  ( A  \  { ( f `  (/) ) } ) )
8067, 79syl5eq 2668 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( ( ran  f  \  { ( f `  (/) ) } )  u.  ( A 
\  ran  f )
)  =  ( A 
\  { ( f `
 (/) ) } ) )
8162, 66, 803brtr3d 4684 . . . . 5  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  A  ~~  ( A  \  { ( f `  (/) ) } ) )
8281ensymd 8007 . . . 4  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( A  \  { ( f `  (/) ) } )  ~~  A )
83 entr 8008 . . . 4  |-  ( ( ( A  \  { B } )  ~~  ( A  \  { ( f `
 (/) ) } )  /\  ( A  \  { ( f `  (/) ) } )  ~~  A )  ->  ( A  \  { B }
)  ~~  A )
8413, 82, 83syl2anc 693 . . 3  |-  ( ( ( om  ~<_  A  /\  B  e.  A )  /\  f : om -1-1-> A
)  ->  ( A  \  { B } ) 
~~  A )
852, 84exlimddv 1863 . 2  |-  ( ( om  ~<_  A  /\  B  e.  A )  ->  ( A  \  { B }
)  ~~  A )
86 difsn 4328 . . . 4  |-  ( -.  B  e.  A  -> 
( A  \  { B } )  =  A )
8786adantl 482 . . 3  |-  ( ( om  ~<_  A  /\  -.  B  e.  A )  ->  ( A  \  { B } )  =  A )
88 enrefg 7987 . . . . 5  |-  ( A  e.  _V  ->  A  ~~  A )
894, 88syl 17 . . . 4  |-  ( om  ~<_  A  ->  A  ~~  A )
9089adantr 481 . . 3  |-  ( ( om  ~<_  A  /\  -.  B  e.  A )  ->  A  ~~  A )
9187, 90eqbrtrd 4675 . 2  |-  ( ( om  ~<_  A  /\  -.  B  e.  A )  ->  ( A  \  { B } )  ~~  A
)
9285, 91pm2.61dan 832 1  |-  ( om  ~<_  A  ->  ( A  \  { B } ) 
~~  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653   `'ccnv 5113   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888   omcom 7065    ~~ cen 7952    ~<_ cdom 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957
This theorem is referenced by:  infdiffi  8555  infcda1  9015  infpss  9039
  Copyright terms: Public domain W3C validator