| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infdifsn | Structured version Visualization version Unicode version | ||
| Description: Removing a singleton from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Mario Carneiro, 16-May-2015.) |
| Ref | Expression |
|---|---|
| infdifsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 7966 |
. . . 4
| |
| 2 | 1 | adantr 481 |
. . 3
|
| 3 | reldom 7961 |
. . . . . . 7
| |
| 4 | 3 | brrelex2i 5159 |
. . . . . 6
|
| 5 | 4 | ad2antrr 762 |
. . . . 5
|
| 6 | simplr 792 |
. . . . 5
| |
| 7 | f1f 6101 |
. . . . . . 7
| |
| 8 | 7 | adantl 482 |
. . . . . 6
|
| 9 | peano1 7085 |
. . . . . 6
| |
| 10 | ffvelrn 6357 |
. . . . . 6
| |
| 11 | 8, 9, 10 | sylancl 694 |
. . . . 5
|
| 12 | difsnen 8042 |
. . . . 5
| |
| 13 | 5, 6, 11, 12 | syl3anc 1326 |
. . . 4
|
| 14 | vex 3203 |
. . . . . . . . . 10
| |
| 15 | f1f1orn 6148 |
. . . . . . . . . . 11
| |
| 16 | 15 | adantl 482 |
. . . . . . . . . 10
|
| 17 | f1oen3g 7971 |
. . . . . . . . . 10
| |
| 18 | 14, 16, 17 | sylancr 695 |
. . . . . . . . 9
|
| 19 | 18 | ensymd 8007 |
. . . . . . . 8
|
| 20 | 3 | brrelexi 5158 |
. . . . . . . . . . 11
|
| 21 | 20 | ad2antrr 762 |
. . . . . . . . . 10
|
| 22 | limom 7080 |
. . . . . . . . . . 11
| |
| 23 | 22 | limenpsi 8135 |
. . . . . . . . . 10
|
| 24 | 21, 23 | syl 17 |
. . . . . . . . 9
|
| 25 | 14 | resex 5443 |
. . . . . . . . . . 11
|
| 26 | simpr 477 |
. . . . . . . . . . . 12
| |
| 27 | difss 3737 |
. . . . . . . . . . . 12
| |
| 28 | f1ores 6151 |
. . . . . . . . . . . 12
| |
| 29 | 26, 27, 28 | sylancl 694 |
. . . . . . . . . . 11
|
| 30 | f1oen3g 7971 |
. . . . . . . . . . 11
| |
| 31 | 25, 29, 30 | sylancr 695 |
. . . . . . . . . 10
|
| 32 | f1orn 6147 |
. . . . . . . . . . . . 13
| |
| 33 | 32 | simprbi 480 |
. . . . . . . . . . . 12
|
| 34 | imadif 5973 |
. . . . . . . . . . . 12
| |
| 35 | 16, 33, 34 | 3syl 18 |
. . . . . . . . . . 11
|
| 36 | f1fn 6102 |
. . . . . . . . . . . . . 14
| |
| 37 | 36 | adantl 482 |
. . . . . . . . . . . . 13
|
| 38 | fnima 6010 |
. . . . . . . . . . . . 13
| |
| 39 | 37, 38 | syl 17 |
. . . . . . . . . . . 12
|
| 40 | fnsnfv 6258 |
. . . . . . . . . . . . . 14
| |
| 41 | 37, 9, 40 | sylancl 694 |
. . . . . . . . . . . . 13
|
| 42 | 41 | eqcomd 2628 |
. . . . . . . . . . . 12
|
| 43 | 39, 42 | difeq12d 3729 |
. . . . . . . . . . 11
|
| 44 | 35, 43 | eqtrd 2656 |
. . . . . . . . . 10
|
| 45 | 31, 44 | breqtrd 4679 |
. . . . . . . . 9
|
| 46 | entr 8008 |
. . . . . . . . 9
| |
| 47 | 24, 45, 46 | syl2anc 693 |
. . . . . . . 8
|
| 48 | entr 8008 |
. . . . . . . 8
| |
| 49 | 19, 47, 48 | syl2anc 693 |
. . . . . . 7
|
| 50 | difexg 4808 |
. . . . . . . 8
| |
| 51 | enrefg 7987 |
. . . . . . . 8
| |
| 52 | 5, 50, 51 | 3syl 18 |
. . . . . . 7
|
| 53 | disjdif 4040 |
. . . . . . . 8
| |
| 54 | 53 | a1i 11 |
. . . . . . 7
|
| 55 | difss 3737 |
. . . . . . . . . 10
| |
| 56 | ssrin 3838 |
. . . . . . . . . 10
| |
| 57 | 55, 56 | ax-mp 5 |
. . . . . . . . 9
|
| 58 | sseq0 3975 |
. . . . . . . . 9
| |
| 59 | 57, 53, 58 | mp2an 708 |
. . . . . . . 8
|
| 60 | 59 | a1i 11 |
. . . . . . 7
|
| 61 | unen 8040 |
. . . . . . 7
| |
| 62 | 49, 52, 54, 60, 61 | syl22anc 1327 |
. . . . . 6
|
| 63 | frn 6053 |
. . . . . . . 8
| |
| 64 | 8, 63 | syl 17 |
. . . . . . 7
|
| 65 | undif 4049 |
. . . . . . 7
| |
| 66 | 64, 65 | sylib 208 |
. . . . . 6
|
| 67 | uncom 3757 |
. . . . . . 7
| |
| 68 | eldifn 3733 |
. . . . . . . . . . 11
| |
| 69 | fnfvelrn 6356 |
. . . . . . . . . . . 12
| |
| 70 | 37, 9, 69 | sylancl 694 |
. . . . . . . . . . 11
|
| 71 | 68, 70 | nsyl3 133 |
. . . . . . . . . 10
|
| 72 | disjsn 4246 |
. . . . . . . . . 10
| |
| 73 | 71, 72 | sylibr 224 |
. . . . . . . . 9
|
| 74 | undif4 4035 |
. . . . . . . . 9
| |
| 75 | 73, 74 | syl 17 |
. . . . . . . 8
|
| 76 | uncom 3757 |
. . . . . . . . . 10
| |
| 77 | 76, 66 | syl5eq 2668 |
. . . . . . . . 9
|
| 78 | 77 | difeq1d 3727 |
. . . . . . . 8
|
| 79 | 75, 78 | eqtrd 2656 |
. . . . . . 7
|
| 80 | 67, 79 | syl5eq 2668 |
. . . . . 6
|
| 81 | 62, 66, 80 | 3brtr3d 4684 |
. . . . 5
|
| 82 | 81 | ensymd 8007 |
. . . 4
|
| 83 | entr 8008 |
. . . 4
| |
| 84 | 13, 82, 83 | syl2anc 693 |
. . 3
|
| 85 | 2, 84 | exlimddv 1863 |
. 2
|
| 86 | difsn 4328 |
. . . 4
| |
| 87 | 86 | adantl 482 |
. . 3
|
| 88 | enrefg 7987 |
. . . . 5
| |
| 89 | 4, 88 | syl 17 |
. . . 4
|
| 90 | 89 | adantr 481 |
. . 3
|
| 91 | 87, 90 | eqbrtrd 4675 |
. 2
|
| 92 | 85, 91 | pm2.61dan 832 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 |
| This theorem is referenced by: infdiffi 8555 infcda1 9015 infpss 9039 |
| Copyright terms: Public domain | W3C validator |