| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihglblem2aN | Structured version Visualization version Unicode version | ||
| Description: Lemma for isomorphism H of a GLB. (Contributed by NM, 19-Mar-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dihglblem.b |
|
| dihglblem.l |
|
| dihglblem.m |
|
| dihglblem.g |
|
| dihglblem.h |
|
| dihglblem.t |
|
| Ref | Expression |
|---|---|
| dihglblem2aN |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dihglblem.t |
. . 3
| |
| 2 | 1 | a1i 11 |
. 2
|
| 3 | simprr 796 |
. . . 4
| |
| 4 | n0 3931 |
. . . 4
| |
| 5 | 3, 4 | sylib 208 |
. . 3
|
| 6 | hllat 34650 |
. . . . . . 7
| |
| 7 | 6 | ad3antrrr 766 |
. . . . . 6
|
| 8 | simplrl 800 |
. . . . . . 7
| |
| 9 | simpr 477 |
. . . . . . 7
| |
| 10 | 8, 9 | sseldd 3604 |
. . . . . 6
|
| 11 | dihglblem.b |
. . . . . . . 8
| |
| 12 | dihglblem.h |
. . . . . . . 8
| |
| 13 | 11, 12 | lhpbase 35284 |
. . . . . . 7
|
| 14 | 13 | ad3antlr 767 |
. . . . . 6
|
| 15 | dihglblem.m |
. . . . . . 7
| |
| 16 | 11, 15 | latmcl 17052 |
. . . . . 6
|
| 17 | 7, 10, 14, 16 | syl3anc 1326 |
. . . . 5
|
| 18 | eqidd 2623 |
. . . . . 6
| |
| 19 | oveq1 6657 |
. . . . . . . 8
| |
| 20 | 19 | eqeq2d 2632 |
. . . . . . 7
|
| 21 | 20 | rspcev 3309 |
. . . . . 6
|
| 22 | 9, 18, 21 | syl2anc 693 |
. . . . 5
|
| 23 | ovex 6678 |
. . . . . 6
| |
| 24 | eleq1 2689 |
. . . . . . 7
| |
| 25 | eqeq1 2626 |
. . . . . . . . 9
| |
| 26 | 25 | rexbidv 3052 |
. . . . . . . 8
|
| 27 | 26 | elrab 3363 |
. . . . . . 7
|
| 28 | 24, 27 | syl6bb 276 |
. . . . . 6
|
| 29 | 23, 28 | spcev 3300 |
. . . . 5
|
| 30 | 17, 22, 29 | syl2anc 693 |
. . . 4
|
| 31 | n0 3931 |
. . . 4
| |
| 32 | 30, 31 | sylibr 224 |
. . 3
|
| 33 | 5, 32 | exlimddv 1863 |
. 2
|
| 34 | 2, 33 | eqnetrd 2861 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-lat 17046 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-lhyp 35274 |
| This theorem is referenced by: dihglblem3N 36584 |
| Copyright terms: Public domain | W3C validator |