Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem3N Structured version   Visualization version   Unicode version

Theorem dihglblem3N 36584
Description: Isomorphism H of a lattice glb. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem.b  |-  B  =  ( Base `  K
)
dihglblem.l  |-  .<_  =  ( le `  K )
dihglblem.m  |-  ./\  =  ( meet `  K )
dihglblem.g  |-  G  =  ( glb `  K
)
dihglblem.h  |-  H  =  ( LHyp `  K
)
dihglblem.t  |-  T  =  { u  e.  B  |  E. v  e.  S  u  =  ( v  ./\  W ) }
dihglblem.i  |-  J  =  ( ( DIsoB `  K
) `  W )
dihglblem.ih  |-  I  =  ( ( DIsoH `  K
) `  W )
Assertion
Ref Expression
dihglblem3N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  (
I `  ( G `  T ) )  = 
|^|_ x  e.  T  ( I `  x
) )
Distinct variable groups:    x, u, v,  ./\    x,  .<_    x, B, u    x, G    x, H    x, K    x, S, u, v    x, T    x, W, u, v    u,  .<_ , v   
v, B    u, G, v    u, H, v    u, K, v
Allowed substitution hints:    T( v, u)    I( x, v, u)    J( x, v, u)

Proof of Theorem dihglblem3N
StepHypRef Expression
1 simp1 1061 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 dihglblem.t . . . . . 6  |-  T  =  { u  e.  B  |  E. v  e.  S  u  =  ( v  ./\  W ) }
3 simp11l 1172 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  K  e.  HL )
4 hllat 34650 . . . . . . . . . . . 12  |-  ( K  e.  HL  ->  K  e.  Lat )
53, 4syl 17 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  K  e.  Lat )
6 simp12l 1174 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  S  C_  B )
7 simp3 1063 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  v  e.  S )
86, 7sseldd 3604 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  v  e.  B )
9 simp11r 1173 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  W  e.  H )
10 dihglblem.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  K
)
11 dihglblem.h . . . . . . . . . . . . 13  |-  H  =  ( LHyp `  K
)
1210, 11lhpbase 35284 . . . . . . . . . . . 12  |-  ( W  e.  H  ->  W  e.  B )
139, 12syl 17 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  W  e.  B )
14 dihglblem.l . . . . . . . . . . . 12  |-  .<_  =  ( le `  K )
15 dihglblem.m . . . . . . . . . . . 12  |-  ./\  =  ( meet `  K )
1610, 14, 15latmle2 17077 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  v  e.  B  /\  W  e.  B )  ->  ( v  ./\  W
)  .<_  W )
175, 8, 13, 16syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  (
v  ./\  W )  .<_  W )
18173expia 1267 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B )  ->  (
v  e.  S  -> 
( v  ./\  W
)  .<_  W ) )
19 breq1 4656 . . . . . . . . . 10  |-  ( u  =  ( v  ./\  W )  ->  ( u  .<_  W  <->  ( v  ./\  W )  .<_  W )
)
2019biimprcd 240 . . . . . . . . 9  |-  ( ( v  ./\  W )  .<_  W  ->  ( u  =  ( v  ./\  W )  ->  u  .<_  W ) )
2118, 20syl6 35 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B )  ->  (
v  e.  S  -> 
( u  =  ( v  ./\  W )  ->  u  .<_  W )
) )
2221rexlimdv 3030 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B )  ->  ( E. v  e.  S  u  =  ( v  ./\  W )  ->  u  .<_  W ) )
2322ss2rabdv 3683 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  { u  e.  B  |  E. v  e.  S  u  =  ( v  ./\  W ) }  C_  { u  e.  B  |  u  .<_  W } )
242, 23syl5eqss 3649 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  T  C_ 
{ u  e.  B  |  u  .<_  W }
)
25 dihglblem.i . . . . . . 7  |-  J  =  ( ( DIsoB `  K
) `  W )
2610, 14, 11, 25dibdmN 36446 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  dom  J  =  {
u  e.  B  |  u  .<_  W } )
27263ad2ant1 1082 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  dom  J  =  { u  e.  B  |  u  .<_  W } )
2824, 27sseqtr4d 3642 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  T  C_ 
dom  J )
29 dihglblem.g . . . . . 6  |-  G  =  ( glb `  K
)
3010, 14, 15, 29, 11, 2dihglblem2aN 36582 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) ) )  ->  T  =/=  (/) )
31303adant3 1081 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  T  =/=  (/) )
3229, 11, 25dibglbN 36455 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  C_  dom  J  /\  T  =/=  (/) ) )  ->  ( J `  ( G `  T ) )  = 
|^|_ x  e.  T  ( J `  x ) )
331, 28, 31, 32syl12anc 1324 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  ( J `  ( G `  T ) )  = 
|^|_ x  e.  T  ( J `  x ) )
3410, 14, 15, 29, 11, 2dihglblem2N 36583 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  B  /\  ( G `  S
)  .<_  W )  -> 
( G `  S
)  =  ( G `
 T ) )
35343adant2r 1321 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  ( G `  S )  =  ( G `  T ) )
3635fveq2d 6195 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  ( J `  ( G `  S ) )  =  ( J `  ( G `  T )
) )
37 simpl1 1064 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  x  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
3824sselda 3603 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  x  e.  T )  ->  x  e.  { u  e.  B  |  u  .<_  W }
)
39 breq1 4656 . . . . . . 7  |-  ( u  =  x  ->  (
u  .<_  W  <->  x  .<_  W ) )
4039elrab 3363 . . . . . 6  |-  ( x  e.  { u  e.  B  |  u  .<_  W }  <->  ( x  e.  B  /\  x  .<_  W ) )
4138, 40sylib 208 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  x  e.  T )  ->  (
x  e.  B  /\  x  .<_  W ) )
42 dihglblem.ih . . . . . 6  |-  I  =  ( ( DIsoH `  K
) `  W )
4310, 14, 11, 42, 25dihvalb 36526 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  B  /\  x  .<_  W ) )  ->  (
I `  x )  =  ( J `  x ) )
4437, 41, 43syl2anc 693 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  x  e.  T )  ->  (
I `  x )  =  ( J `  x ) )
4544iineq2dv 4543 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  |^|_ x  e.  T  ( I `  x )  =  |^|_ x  e.  T  ( J `
 x ) )
4633, 36, 453eqtr4rd 2667 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  |^|_ x  e.  T  ( I `  x )  =  ( J `  ( G `
 S ) ) )
47 simp1l 1085 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  K  e.  HL )
48 hlclat 34645 . . . . 5  |-  ( K  e.  HL  ->  K  e.  CLat )
4947, 48syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  K  e.  CLat )
50 simp2l 1087 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  S  C_  B )
5110, 29clatglbcl 17114 . . . 4  |-  ( ( K  e.  CLat  /\  S  C_  B )  ->  ( G `  S )  e.  B )
5249, 50, 51syl2anc 693 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  ( G `  S )  e.  B )
53 simp3 1063 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  ( G `  S )  .<_  W )
5410, 14, 11, 42, 25dihvalb 36526 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( G `
 S )  e.  B  /\  ( G `
 S )  .<_  W ) )  -> 
( I `  ( G `  S )
)  =  ( J `
 ( G `  S ) ) )
551, 52, 53, 54syl12anc 1324 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  (
I `  ( G `  S ) )  =  ( J `  ( G `  S )
) )
5635fveq2d 6195 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  (
I `  ( G `  S ) )  =  ( I `  ( G `  T )
) )
5746, 55, 563eqtr2rd 2663 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  (
I `  ( G `  T ) )  = 
|^|_ x  e.  T  ( I `  x
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   |^|_ciin 4521   class class class wbr 4653   dom cdm 5114   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   glbcglb 16943   meetcmee 16945   Latclat 17045   CLatccla 17107   HLchlt 34637   LHypclh 35270   DIsoBcdib 36427   DIsoHcdih 36517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-disoa 36318  df-dib 36428  df-dih 36518
This theorem is referenced by:  dihglblem3aN  36585
  Copyright terms: Public domain W3C validator