MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtt1 Structured version   Visualization version   Unicode version

Theorem ordtt1 21183
Description: The order topology is T1 for any poset. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
ordtt1  |-  ( R  e.  PosetRel  ->  (ordTop `  R )  e.  Fre )

Proof of Theorem ordtt1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordttop 21004 . 2  |-  ( R  e.  PosetRel  ->  (ordTop `  R )  e.  Top )
2 snssi 4339 . . . . . . . 8  |-  ( x  e.  dom  R  ->  { x }  C_  dom  R )
32adantl 482 . . . . . . 7  |-  ( ( R  e.  PosetRel  /\  x  e.  dom  R )  ->  { x }  C_  dom  R )
4 sseqin2 3817 . . . . . . 7  |-  ( { x }  C_  dom  R  <-> 
( dom  R  i^i  { x } )  =  { x } )
53, 4sylib 208 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  x  e.  dom  R )  -> 
( dom  R  i^i  { x } )  =  { x } )
6 velsn 4193 . . . . . . . 8  |-  ( y  e.  { x }  <->  y  =  x )
7 eqid 2622 . . . . . . . . . . . . 13  |-  dom  R  =  dom  R
87psref 17208 . . . . . . . . . . . 12  |-  ( ( R  e.  PosetRel  /\  x  e.  dom  R )  ->  x R x )
98adantr 481 . . . . . . . . . . 11  |-  ( ( ( R  e.  PosetRel  /\  x  e.  dom  R )  /\  y  e.  dom  R )  ->  x R x )
109, 9jca 554 . . . . . . . . . 10  |-  ( ( ( R  e.  PosetRel  /\  x  e.  dom  R )  /\  y  e.  dom  R )  ->  ( x R x  /\  x R x ) )
11 breq2 4657 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
x R y  <->  x R x ) )
12 breq1 4656 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
y R x  <->  x R x ) )
1311, 12anbi12d 747 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( x R y  /\  y R x )  <->  ( x R x  /\  x R x ) ) )
1410, 13syl5ibrcom 237 . . . . . . . . 9  |-  ( ( ( R  e.  PosetRel  /\  x  e.  dom  R )  /\  y  e.  dom  R )  ->  ( y  =  x  ->  ( x R y  /\  y R x ) ) )
15 psasym 17210 . . . . . . . . . . . 12  |-  ( ( R  e.  PosetRel  /\  x R y  /\  y R x )  ->  x  =  y )
1615eqcomd 2628 . . . . . . . . . . 11  |-  ( ( R  e.  PosetRel  /\  x R y  /\  y R x )  -> 
y  =  x )
17163expib 1268 . . . . . . . . . 10  |-  ( R  e.  PosetRel  ->  ( ( x R y  /\  y R x )  -> 
y  =  x ) )
1817ad2antrr 762 . . . . . . . . 9  |-  ( ( ( R  e.  PosetRel  /\  x  e.  dom  R )  /\  y  e.  dom  R )  ->  ( (
x R y  /\  y R x )  -> 
y  =  x ) )
1914, 18impbid 202 . . . . . . . 8  |-  ( ( ( R  e.  PosetRel  /\  x  e.  dom  R )  /\  y  e.  dom  R )  ->  ( y  =  x  <->  ( x R y  /\  y R x ) ) )
206, 19syl5bb 272 . . . . . . 7  |-  ( ( ( R  e.  PosetRel  /\  x  e.  dom  R )  /\  y  e.  dom  R )  ->  ( y  e.  { x }  <->  ( x R y  /\  y R x ) ) )
2120rabbi2dva 3821 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  x  e.  dom  R )  -> 
( dom  R  i^i  { x } )  =  { y  e.  dom  R  |  ( x R y  /\  y R x ) } )
225, 21eqtr3d 2658 . . . . 5  |-  ( ( R  e.  PosetRel  /\  x  e.  dom  R )  ->  { x }  =  { y  e.  dom  R  |  ( x R y  /\  y R x ) } )
237ordtcld3 21003 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  x  e.  dom  R  /\  x  e.  dom  R )  ->  { y  e.  dom  R  |  ( x R y  /\  y R x ) }  e.  ( Clsd `  (ordTop `  R
) ) )
24233anidm23 1385 . . . . 5  |-  ( ( R  e.  PosetRel  /\  x  e.  dom  R )  ->  { y  e.  dom  R  |  ( x R y  /\  y R x ) }  e.  ( Clsd `  (ordTop `  R
) ) )
2522, 24eqeltrd 2701 . . . 4  |-  ( ( R  e.  PosetRel  /\  x  e.  dom  R )  ->  { x }  e.  ( Clsd `  (ordTop `  R
) ) )
2625ralrimiva 2966 . . 3  |-  ( R  e.  PosetRel  ->  A. x  e.  dom  R { x }  e.  ( Clsd `  (ordTop `  R
) ) )
277ordttopon 20997 . . . . 5  |-  ( R  e.  PosetRel  ->  (ordTop `  R )  e.  (TopOn `  dom  R ) )
28 toponuni 20719 . . . . 5  |-  ( (ordTop `  R )  e.  (TopOn `  dom  R )  ->  dom  R  =  U. (ordTop `  R ) )
2927, 28syl 17 . . . 4  |-  ( R  e.  PosetRel  ->  dom  R  =  U. (ordTop `  R )
)
3029raleqdv 3144 . . 3  |-  ( R  e.  PosetRel  ->  ( A. x  e.  dom  R { x }  e.  ( Clsd `  (ordTop `  R )
)  <->  A. x  e.  U. (ordTop `  R ) { x }  e.  (
Clsd `  (ordTop `  R
) ) ) )
3126, 30mpbid 222 . 2  |-  ( R  e.  PosetRel  ->  A. x  e.  U. (ordTop `  R ) { x }  e.  (
Clsd `  (ordTop `  R
) ) )
32 eqid 2622 . . 3  |-  U. (ordTop `  R )  =  U. (ordTop `  R )
3332ist1 21125 . 2  |-  ( (ordTop `  R )  e.  Fre  <->  (
(ordTop `  R )  e.  Top  /\  A. x  e.  U. (ordTop `  R
) { x }  e.  ( Clsd `  (ordTop `  R ) ) ) )
341, 31, 33sylanbrc 698 1  |-  ( R  e.  PosetRel  ->  (ordTop `  R )  e.  Fre )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    i^i cin 3573    C_ wss 3574   {csn 4177   U.cuni 4436   class class class wbr 4653   dom cdm 5114   ` cfv 5888  ordTopcordt 16159   PosetRelcps 17198   Topctop 20698  TopOnctopon 20715   Clsdccld 20820   Frect1 21111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-topgen 16104  df-ordt 16161  df-ps 17200  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-t1 21118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator